31 research outputs found

    Self-Similarity of ICME Flux Ropes : Observations by Radially Aligned Spacecraft in the Inner Heliosphere

    Get PDF
    Abstract Interplanetary coronal mass ejections (ICMEs) are a significant feature of the heliospheric environment and the primary cause of adverse space weather at the Earth. ICME propagation, and the evolution of ICME magnetic field structure during propagation, are still not fully understood. We analyze the magnetic field structures of 18 ICME magnetic flux ropes observed by radially aligned spacecraft in the inner heliosphere. Similarity in the underlying flux rope structures is determined through the application of a simple technique that maps the magnetic field profile from one spacecraft to the other. In many cases, the flux ropes show very strong underlying similarities at the different spacecraft. The mapping technique reveals similarities that are not readily apparent in the unmapped data and is a useful tool when determining whether magnetic field time series observed at different spacecraft are associated with the same ICME. Lundquist fitting has been applied to the flux ropes and the rope orientations have been determined; macroscale differences in the profiles at the aligned spacecraft may be ascribed to differences in flux rope orientation. Assuming that the same region of the ICME was observed by the aligned spacecraft in each case, the fitting indicates some weak tendency for the rope axes to reduce in inclination relative to the solar equatorial plane and to align with the solar east-west direction with heliocentric distance.Peer reviewe

    TITAN's Digital RFQ Ion Beam Cooler and Buncher, Operation and Performance

    Full text link
    We present a description of the Radio Frequency Quadrupole (RFQ) ion trap built as part of the TITAN facility. It consists of a gas-filled, segmented, linear Paul trap and is the first stage of the TITAN setup with the purpose of cooling and bunching radioactive ion beams delivered from ISAC-TRIUMF. This is the first such device to be driven digitally, i.e., using a high voltage (Vpp=400VV_{pp} = \rm{400 \, V}), wide bandwidth (0.2<f<1.2MHz0.2 < f < 1.2 \, \rm{MHz}) square-wave as compared to the typical sinusoidal wave form. Results from the commissioning of the device as well as systematic studies with stable and radioactive ions are presented including efficiency measurements with stable 133^{133}Cs and radioactive 124,126^{124, 126}Cs. A novel and unique mode of operation of this device is also demonstrated where the cooled ion bunches are extracted in reverse mode, i.e., in the same direction as previously injected.Comment: 34 pages, 17 figure

    Experimental progress in positronium laser physics

    Get PDF

    Verifying the accuracy of the TITAN Penning-trap mass spectrometer

    No full text
    TITAN (TRIUMF's Ion Traps for Atomic and Nuclear science) is an online facility designed to carry out high-precision mass measurements on singly and highly charged radioactive ions. The TITAN Penning trap has been built and optimized in order to perform such measurements with an accuracy in the sub ppb-range. A detailed characterization of the TITAN Penning trap is presented and a new compensation method is derived and demonstrated, verifying the performance in the range of sub-ppb
    corecore