1,658 research outputs found
Solitons of two-component Bose-Einstein condensates modulated in space and time
In this paper we present soliton solutions of two coupled nonlinear
Schodinger equations modulated in the bspace and time. The approach allows us
to obatin solitons with large variety of solutions depending on the
nonlinearity and the potential profiles. As examples we show three cases with
soliton solution in such system, one of them with potential varying between
repulsive and attractive behavior and the others with nonlinearity localized
and delocalized, respectively.Comment: 18 pages, 8 figure
Temperature and Frequency Dependence of Complex Conductance of Ultrathin YBa2Cu3O7-x Films: A Study of Vortex-Antivortex Pair Unbinding
We have studied the temperature dependencies of the complex sheet conductance
of 1-3 unit cell (UC) thick YBa2Cu3O7-x films sandwiched between semiconducting
Pr0.6Y0.4Ba2Cu3O7-x layers at high frequencies. Experiments have been carried
out in a frequency range between: 2 - 30 MHz with one-spiral coil technique,
100 MHz - 1 GHz frequency range with a new technique using the spiral coil
cavity and at 30 GHz by aid of a resonant cavity technique. The real and
imaginary parts of the mutual-inductance between a coil and a film were
measured and converted to complex conductivity by aid of the inversion
procedure. We have found a quadratic temperature dependence of the kinetic
inductance, L_k^-1(T), at low temperatures independent of frequency, with a
break in slope at T^dc_BKT, the maximum of real part of conductance and a large
shift of the break temperature and the maximum position to higher temperatures
with increasing frequency. We obtain from these data the universal ratio
T^dc_BKT/L_k^-1(T^dc_BKT) = 25, 25, and 17 nHK for 1-, 2- and 3UC films,
respectively in close agreement with theoretical prediction of 12 nHK for
vortex-antivortex unbinding transition. The activated temperature dependence of
the vortex diffusion constant was observed and discussed in the framework of
vortex-antivortex pair pinning.
PACS numbers: 74.80.Dm, 74.25.Nf, 74.72.Bk, 74.76.BzComment: PDF file, 10 pages, 6 figures, to be published in J. Low Temp. Phys.;
Proc. of NATO ARW: VORTEX 200
Visual Analysis of Uncertainty in Trajectories
Mining trajectory datasets has many important applications. Real trajectory data often involve uncertainty due to inadequate sampling rates and measurement errors. For some trajectories, their precise positions cannot be recovered and the exact routes that vehicles traveled cannot be accurately reconstructed. In this paper, we investigate the uncertainty problem in trajectory data and present a visual analytics system to reveal, analyze, and solve the uncertainties associated with trajectory samples. We first propose two novel visual encoding schemes called the road map analyzer and the uncertainty lens for discovering road map errors and visually analyzing the uncertainty in trajectory data respectively. Then, we conduct three case studies to discover the map errors, to address the ambiguity problem in map-matching, and to reconstruct the trajectories with historical data. These case studies demonstrate the capability and effectiveness of our system. ? 2014 Springer International Publishing.EI
Scaling limit of virtual states of triatomic systems
For a system with three identical atoms, the dependence of the wave
virtual state energy on the weakly bound dimer and trimer binding energies is
calculated in a form of a universal scaling function. The scaling function is
obtained from a renormalizable three-body model with a pairwise Dirac-delta
interaction. It was also discussed the threshold condition for the appearance
of the trimer virtual state.Comment: 9 pages, 3 figure
Dynamic Scaling and Two-Dimensional High-Tc Superconductors
There has been ongoing debate over the critical behavior of two-dimensional
superconductors; in particular for high Tc superconductors. The conventional
view is that a Kosterlitz-Thouless-Berezinskii transition occurs as long as
finite size effects do not obscure the transition. However, there have been
recent suggestions that a different transition actually occurs which
incorporates aspects of both the dynamic scaling theory of Fisher, Fisher, and
Huse and the Kosterlitz-Thouless-Berezinskii transition. Of general interest is
that this modified transition apparently has a universal dynamic critical
exponent. Some have countered that this apparent universal behavior is rooted
in a newly proposed finite-size scaling theory; one that also incorporates
scaling and conventional two-dimensional theory. To investigate these issues we
study DC voltage versus current data of a 12 angstrom thick YBCO film. We find
that the newly proposed scaling theories have intrinsic flexibility that is
relevant to the analysis of the experiments. In particular, the data scale
according to the modified transition for arbitrarily defined critical
temperatures between 0 K and 19.5 K, and the temperature range of a successful
scaling collapse is related directly to the sensitivity of the measurement.
This implies that the apparent universal exponent is due to the intrinsic
flexibility rather than some real physical property. To address this intrinsic
flexibility, we propose a criterion which would give conclusive evidence for
phase transitions in two-dimensional superconductors. We conclude by reviewing
results to see if our criterion is satisfied.Comment: 14 page
UHECR as Decay Products of Heavy Relics? The Lifetime Problem
The essential features underlying the top-down scenarii for UHECR are
discussed, namely, the stability (or lifetime) imposed to the heavy objects
(particles) whatever they be: topological and non-topological solitons,
X-particles, cosmic defects, microscopic black-holes, fundamental strings. We
provide an unified formula for the quantum decay rate of all these objects as
well as the particle decays in the standard model. The key point in the
top-down scenarii is the necessity to adjust the lifetime of the heavy object
to the age of the universe. This ad-hoc requirement needs a very high
dimensional operator to govern its decay and/or an extremely small coupling
constant. The natural lifetimes of such heavy objects are, however, microscopic
times associated to the GUT energy scale (sim 10^{-28} sec. or shorter). It is
at this energy scale (by the end of inflation) where they could have been
abundantly formed in the early universe and it seems natural that they decayed
shortly after being formed.Comment: 11 pages, LaTex, no figures, updated versio
AltitudeOmics: The Integrative Physiology of Human Acclimatization to Hypobaric Hypoxia and Its Retention upon Reascent.
An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project aimed to bridge this gap. Our goals were 1) to describe a phenotype for successful acclimatization and assess its retention and 2) use these findings as a foundation for companion mechanistic studies. Our approach was to characterize acclimatization by measuring changes in arterial oxygenation and hemoglobin concentration [Hb], acute mountain sickness (AMS), cognitive function, and exercise performance in 21 subjects as they acclimatized to 5260 m over 16 days. We then focused on the retention of acclimatization by having subjects reascend to 5260 m after either 7 (n = 14) or 21 (n = 7) days at 1525 m. At 16 days at 5260 m we observed: 1) increases in arterial oxygenation and [Hb] (compared to acute hypoxia: PaO2 rose 9±4 mmHg to 45±4 while PaCO2 dropped a further 6±3 mmHg to 21±3, and [Hb] rose 1.8±0.7 g/dL to 16±2 g/dL; 2) no AMS; 3) improved cognitive function; and 4) improved exercise performance by 8±8% (all changes p<0.01). Upon reascent, we observed retention of arterial oxygenation but not [Hb], protection from AMS, retention of exercise performance, less retention of cognitive function; and noted that some of these effects lasted for 21 days. Taken together, these findings reveal new information about retention of acclimatization, and can be used as a physiological foundation to explore the molecular mechanisms of acclimatization and its retention
Observing Supermassive Black Holes across cosmic time: from phenomenology to physics
In the last decade, a combination of high sensitivity, high spatial
resolution observations and of coordinated multi-wavelength surveys has
revolutionized our view of extra-galactic black hole (BH) astrophysics. We now
know that supermassive black holes reside in the nuclei of almost every galaxy,
grow over cosmological times by accreting matter, interact and merge with each
other, and in the process liberate enormous amounts of energy that influence
dramatically the evolution of the surrounding gas and stars, providing a
powerful self-regulatory mechanism for galaxy formation. The different
energetic phenomena associated to growing black holes and Active Galactic
Nuclei (AGN), their cosmological evolution and the observational techniques
used to unveil them, are the subject of this chapter. In particular, I will
focus my attention on the connection between the theory of high-energy
astrophysical processes giving rise to the observed emission in AGN, the
observable imprints they leave at different wavelengths, and the methods used
to uncover them in a statistically robust way. I will show how such a combined
effort of theorists and observers have led us to unveil most of the SMBH growth
over a large fraction of the age of the Universe, but that nagging
uncertainties remain, preventing us from fully understating the exact role of
black holes in the complex process of galaxy and large-scale structure
formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the
book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and
Treves A. (Eds), 2015, Springer International Publishing AG, Cha
The LHCb VELO Upgrade module construction
The LHCb detector has undergone a major upgrade for LHC Run 3. This Upgrade I detector facilitates operation at higher luminosity and utilises full-detector information at the LHC collision rate, critically including the use of vertex information. A new vertex locator system, the VELO Upgrade, has been constructed. The core element of the new VELO are the double-sided pixelated hybrid silicon detector modules which operate in vacuum close to the LHC beam in a high radiation environment. The construction and quality assurance tests of these modules are described in this paper. The modules incorporate 200 μm thick, n-on-p silicon sensors bump-bonded to 130 nm technology ASICs. These are attached with high precision to a silicon microchannel substrate that uses evaporative CO2 cooling. The ASICs are controlled and read out with flexible printed circuits that are glued to the substrate and wire-bonded to the chips. The mechanical support of the module is given by a carbon fibre plate, two carbon fibre rods and an aluminium plate. The sensor attachment was achieved with an average precision of 21 μm, more than 99.5% of all pixels are fully functional, and a thermal figure of merit of 3 Kcm2W-1 was achieved. The production of the modules was successfully completed in 2021, with the final assembly and installation completed in time for data taking in 2022
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
- …