30 research outputs found

    The radiative transfer for polarized radiation at second order in cosmological perturbations

    Full text link
    This article investigates the full Boltzmann equation up to second order in the cosmological perturbations. Describing the distribution of polarized radiation by using a tensor valued distribution function, the second order Boltzmann equation, including polarization, is derived without relying on the Stokes parameters.Comment: 4 pages, no figure; replaced to match published versio

    The shape of the CMB lensing bispectrum

    Full text link
    Lensing of the CMB generates a significant bispectrum, which should be detected by the Planck satellite at the 5-sigma level and is potentially a non-negligible source of bias for f_NL estimators of local non-Gaussianity. We extend current understanding of the lensing bispectrum in several directions: (1) we perform a non-perturbative calculation of the lensing bispectrum which is ~10% more accurate than previous, first-order calculations; (2) we demonstrate how to incorporate the signal variance of the lensing bispectrum into estimates of its amplitude, providing a good analytical explanation for previous Monte-Carlo results; and (3) we discover the existence of a significant lensing bispectrum in polarization, due to a previously-unnoticed correlation between the lensing potential and E-polarization as large as 30% at low multipoles. We use this improved understanding of the lensing bispectra to re-evaluate Fisher-matrix predictions, both for Planck and cosmic variance limited data. We confirm that the non-negligible lensing-induced bias for estimation of local non-Gaussianity should be robustly treatable, and will only inflate f_NL error bars by a few percent over predictions where lensing effects are completely ignored (but note that lensing must still be accounted for to obtain unbiased constraints). We also show that the detection significance for the lensing bispectrum itself is ultimately limited to 9 sigma by cosmic variance. The tools that we develop for non-perturbative calculation of the lensing bispectrum are directly relevant to other calculations, and we give an explicit construction of a simple non-perturbative quadratic estimator for the lensing potential and relate its cross-correlation power spectrum to the bispectrum. Our numerical codes are publicly available as part of CAMB and LensPix.Comment: 32 pages, 10 figures; minor changes to match JCAP-accepted version. CMB lensing and primordial local bispectrum codes available as part of CAMB (http://camb.info/

    Running spectral index from shooting-star moduli

    Full text link
    We construct an inflationary model that is consistent with both large non-Gaussianity and a running spectral index. The scenario of modulated inflation suggests that modulated perturbation can induce the curvature perturbation with a large non-Gaussianity, even if the inflaton perturbation is negligible. Using this idea, we consider a multi-field extension of the modulated inflation scenario and examine the specific situation where different moduli are responsible for the perturbation at different scales. We suppose that the additional moduli (shooting-star moduli) is responsible for the curvature perturbation at the earlier inflationary epoch and it generates the fluctuation with n>1 spectral index at this scale. After a while, another moduli (or inflaton) takes the place and generates the perturbation with n<1. At the transition point the two fluctuations are comparable with each other. We show how the spectral index is affected by the transition induced by the shooting-star moduli.Comment: 14 pages, latex, accepted for publication in JHE

    ISS-flation

    Get PDF
    Inflation may occur while rolling into the metastable supersymmetry-breaking vacuum of massive supersymmetric QCD. We explore the range of parameters in which slow-roll inflation and long-lived metastable supersymmetry breaking may be simultaneously realized. The end of slow-roll inflation in this context coincides with the spontaneous breaking of a global symmetry, which may give rise to significant curvature perturbations via inhomogenous preheating. Such spontaneous symmetry breaking at the end of inflation may give rise to observable non-gaussianities, distinguishing this scenario from more conventional models of supersymmetric hybrid inflation.Comment: 26 page

    Cosmological Parameters Degeneracies and Non-Gaussian Halo Bias

    Get PDF
    We study the impact of the cosmological parameters uncertainties on the measurements of primordial non-Gaussianity through the large-scale non-Gaussian halo bias effect. While this is not expected to be an issue for the standard LCDM model, it may not be the case for more general models that modify the large-scale shape of the power spectrum. We consider the so-called local non-Gaussianity model and forecasts from planned surveys, alone and combined with a Planck CMB prior. In particular, we consider EUCLID- and LSST-like surveys and forecast the correlations among fNLf_{\rm NL} and the running of the spectral index αs\alpha_s, the dark energy equation of state ww, the effective sound speed of dark energy perturbations cs2c^2_s, the total mass of massive neutrinos Mν=mνM_\nu=\sum m_\nu, and the number of extra relativistic degrees of freedom NνrelN_\nu^{rel}. Neglecting CMB information on fNLf_{\rm NL} and scales k>0.03hk > 0.03 h/Mpc, we find that, if NνrelN_\nu^{\rm rel} is assumed to be known, the uncertainty on cosmological parameters increases the error on fNLf_{\rm NL} by 10 to 30% depending on the survey. Thus the fNLf_{\rm NL} constraint is remarkable robust to cosmological model uncertainties. On the other hand, if NνrelN_\nu^{\rm rel} is simultaneously constrained from the data, the fNLf_{\rm NL} error increases by 80\sim 80%. Finally, future surveys which provide a large sample of galaxies or galaxy clusters over a volume comparable to the Hubble volume can measure primordial non-Gaussianity of the local form with a marginalized 1--σ\sigma error of the order ΔfNL25\Delta f_{\rm NL} \sim 2-5, after combination with CMB priors for the remaining cosmological parameters. These results are competitive with CMB bispectrum constraints achievable with an ideal CMB experiment.Comment: 17 pages, 1 figure added, typos corrected, comments added, matches the published versio

    Non-Gaussian isocurvature perturbations in dark radiation

    Full text link
    We study non-Gaussian properties of the isocurvature perturbations in the dark radiation, which consists of the active neutrinos and extra light species, if exist. We first derive expressions for the bispectra of primordial perturbations which are mixtures of curvature and dark radiation isocurvature perturbations. We also discuss CMB bispectra produced in our model and forecast CMB constraints on the nonlinearity parameters based on the Fisher matrix analysis. Some concrete particle physics motivated models are presented in which large isocurvature perturbations in extra light species and/or the neutrino density isocurvature perturbations as well as their non-Gaussianities may be generated. Thus detections of non-Gaussianity in the dark radiation isocurvature perturbation will give us an opportunity to identify the origin of extra light species and lepton asymmetry.Comment: 32 pages, 7 figure

    Constraining Running Non-Gaussianity

    Full text link
    The primordial non-Gaussian parameter fNL has been shown to be scale-dependent in several models of inflation with a variable speed of sound. Starting from a simple ansatz for a scale-dependent amplitude of the primordial curvature bispectrum for two common phenomenological models of primordial non-Gaussianity, we perform a Fisher matrix analysis of the bispectra of the temperature and polarization of the Cosmic Microwave Background (CMB) radiation and derive the expected constraints on the parameter nNG that quantifies the running of fNL(k) for current and future CMB missions such as WMAP, Planck and CMBPol. We find that CMB information alone, in the event of a significant detection of the non-Gaussian component, corresponding to fNL = 50 for the local model and fNL = 100 for the equilateral model of non-Gaussianity, is able to determine nNG with a 1-sigma uncertainty of Delta nNG = 0.1 and Delta nNG = 0.3, respectively, for the Planck mission. In addition, we consider a Fisher matrix analysis of the galaxy power spectrum to determine the expected constraints on the running parameter nNG for the local model and of the galaxy bispectrum for the equilateral model from future photometric and spectroscopic surveys. We find that, in both cases, large-scale structure observations should achieve results comparable to or even better than those from the CMB, while showing some complementarity due to the different distribution of the non-Gaussian signal over the relevant range of scales. Finally, we compare our findings to the predictions on the amplitude and running of non-Gaussianity of DBI inflation, showing how the constraints on a scale-dependent fNL(k) translate into constraints on the parameter space of the theory.Comment: 37 pages, 14 figure

    Scale-dependent non-Gaussianity probes inflationary physics

    Full text link
    We calculate the scale dependence of the bispectrum and trispectrum in (quasi) local models of non-Gaussian primordial density perturbations, and characterize this scale dependence in terms of new observable parameters. They can help to discriminate between models of inflation, since they are sensitive to properties of the inflationary physics that are not probed by the standard observables. We find consistency relations between these parameters in certain classes of models. We apply our results to a scenario of modulated reheating, showing that the scale dependence of non-Gaussianity can be significant. We also discuss the scale dependence of the bispectrum and trispectrum, in cases where one varies the shape as well as the overall scale of the figure under consideration. We conclude providing a formulation of the curvature perturbation in real space, which generalises the standard local form by dropping the assumption that f_NL and g_NL are constants.Comment: 27 pages, 2 figures. v2: Minor changes to match the published versio

    Signatures of Initial State Modifications on Bispectrum Statistics

    Full text link
    Modifications of the initial-state of the inflaton field can induce a departure from Gaussianity and leave a testable imprint on the higher order correlations of the CMB and large scale structures in the Universe. We focus on the bispectrum statistics of the primordial curvature perturbation and its projection on the CMB. For a canonical single-field action the three-point correlator enhancement is localized, maximizing in the collinear limit, corresponding to enfolded or squashed triangles in comoving momentum space. We show that the available local and equilateral template are very insensitive to this localized enhancement and do not generate noteworthy constraints on initial-state modifications. On the other hand, when considering the addition of a dimension 8 higher order derivative term, we find a dominant rapidly oscillating contribution, which had previously been overlooked and whose significantly enhanced amplitude is independent of the triangle under consideration. Nevertheless, the oscillatory nature of (the sign of) the correlation function implies the signal is nearly orthogonal to currently available observational templates, strongly reducing the sensitivity to the enhancement. Constraints on departures from the standard Bunch-Davies vacuum state can be derived, but also depend on the next-to-leading terms. We emphasize that the construction and application of especially adapted templates could lead to CMB bispectrum constraints on modified initial states already competing with those derived from the power spectrum.Comment: 41 pages, 7 figures, 2 appendices. Added some clarifications and comments, additional references, to appear in JCA

    An overview of the current status of CMB observations

    Full text link
    In this paper we briefly review the current status of the Cosmic Microwave Background (CMB) observations, summarising the latest results obtained from CMB experiments, both in intensity and polarization, and the constraints imposed on the cosmological parameters. We also present a summary of current and future CMB experiments, with a special focus on the quest for the CMB B-mode polarization.Comment: Latest CMB results have been included. References added. To appear in "Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11 July, 200
    corecore