9 research outputs found

    Lifestyle intervention prior to IVF does not improve embryo utilization rate and cumulative live birth rate in women with obesity: a nested cohort study

    Get PDF
    Study Question: Does lifestyle intervention consisting of an energy-restricted diet, enhancement of physical activity and motivational counseling prior to IVF improve embryo utilization rate (EUR) and cumulative live birth rate (CLBR) in women with obesity? Summary Answer: A 6-month lifestyle intervention preceding IVF improved neither EUR nor CLBR in women with obesity in the first IVF treatment cycle where at least one oocyte was retrieved. What Is Known Already: A randomized controlled trial (RCT) evaluating the efficacy of a low caloric liquid formula diet (LCD) preceding IVF in women with obesity was unable to demonstrate an effect of LCD on embryo quality and live birth rate: in this study, only one fresh embryo transfer (ET) or, in case of freeze-all strategy, the first transfer with frozen-thawed embryos was reported. We hypothesized that any effect on embryo quality of a lifestyle intervention in women with obesity undergoing IVF treatment is better revealed by EUR and CLBR after transfer of all fresh and frozen-thawed embryos. Study Design, Size, Duration: This is a nested cohort study within an RCT, the LIFEstyle study. The original study examined whether a 6-month lifestyle intervention prior to infertility treatment in women with obesity improved live birth rate, compared to prompt infertility treatment within 24 months after randomization. In the original study between 2009 and 2012, 577 (three women withdrew informed consent) women with obesity and infertility were assigned to a lifestyle intervention followed by infertility treatment (n = 289) or to prompt infertility treatment (n = 285). Participants/Materials, Setting, Methods: Only participants from the LIFEstyle study who received IVF treatment were eligible for the current analysis. In total, 137 participants (n = 58 in the intervention group and n = 79 in the control group) started the first cycle. In 25 participants, the first cycle was cancelled prior to oocyte retrieval mostly due to poor response. Sixteen participants started a second or third consecutive cycle. The first cycle with successful oocyte retrieval was used for this analysis, resulting in analysis of 51 participants in the intervention group and 72 participants in the control group. Considering differences in embryo scoring methods and ET day strategy between IVF centers, we used EUR as a proxy for embryo quality. EUR was defined as the proportion of inseminated/injected oocytes per cycle that was transferred or cryopreserved as an embryo. Analysis was performed per cycle and per oocyte/embryo. CLBR was defined as the percentage of participants with at least one live birth from the first fresh and subsequent frozen-thawed ET(s). In addition, we calculated the Z-score for singleton neonatal birthweight and compared these outcomes between the two groups. Main Results and the Role Of Chance: The overall mean age was 31.6 years and the mean BMI was 35.4 ± 3.2 kg/m2 in the intervention group, and 34.9 ± 2.9 kg/m2 in the control group. The weight change at 6 months was in favor of the intervention group (mean difference in kg vs the control group: −3.14, 95% CI: −5.73 to −0.56). The median (Q25; Q75) number of oocytes retrieved was 4.00 (2.00; 8.00) in the intervention group versus 6.00 (4.00; 9.75) in the control group, and was not significantly different, as was the number of oocytes inseminated/injected (4.00 [2.00; 8.00] vs 6.00 [3.00; 8.75]), normal fertilized embryos (2.00 [0.50; 5.00] vs 3.00 [1.00; 5.00]) and the number of cryopreserved embryos (2.00 [1.25; 4.75] vs 2.00 [1.00; 4.00]). The median (Q25; Q75) EUR was 33.3% (12.5%; 60.0%) in the intervention group and 33.3% (16.7%; 50.0%) in the control group in the per cycle analysis (adjusted B: 2.7%, 95% CI: −8.6% to 14.0%). In the per oocyte/embryo analysis, in total, 280 oocytes were injected or inseminated in the intervention group, 113 were utilized (transferred or cryopreserved, EUR = 40.4%); in the control group, EUR was 30.8% (142/461). The lifestyle intervention did not significantly improve EUR (adjusted odds ratio [OR]: 1.36, 95% CI: 0.94–1.98) in the per oocyte/embryo analysis, taking into account the interdependency of the oocytes per participant. CLBR was not significantly different between the intervention group and the control group after adjusting for type of infertility (male factor and unexplained) and smoking (27.5% vs 22.2%, adjusted OR: 1.03, 95% CI: 0.43–2.47). Singleton neonatal birthweight and Z-score were not significantly different between the two groups. Limitations, Reasons for Caution: This study is a nested cohort study within an RCT, and no power calculation was performed. The randomization was not stratified for indicated treatment, and although we corrected our analyses for baseline differences, there may be residual confounding. The limited absolute weight loss and the short duration of the lifestyle intervention might be insufficient to affect EUR and CLBR. Wider Implications of the Findings: Our data do not support the hypothesis of a beneficial short-term effect of lifestyle intervention on EUR and CLBR after IVF in women with obesity, although more studies are needed as there may be a potential clinically relevant effect on EUR.Zheng Wang, Henk Groen, Koen C. Van Zomeren, Astrid E.P. Cantineau, Anne Van Oers, Aafke P.A. Van Montfoort, Walter K.H. Kuchenbecker, Marie J. Pelinck, Frank J.M. Broekmans, Nicole F. Klijn, Eugenie M. Kaaijk, Ben W.J. Mol, Annemieke Hoek, and Jannie Van Echten-Arend

    Assisted reproduction treatment and epigenetic inheritance

    Get PDF
    Background: The subject of epigenetic risk of assisted reproduction treatment (ART), initiated by reports on an increase of children with the Beckwith–Wiedemann imprinting disorder, is very topical. Hence, there is a growing literature, including mouse studies. Methods: In order to gain information on transgenerational epigenetic inheritance and epigenetic effects induced by ART, literature databases were searched for papers on this topic using relevant keywords. Results: At the level of genomic imprinting involving CpG methylation, ART-induced epigenetic defects are convincingly observed in mice, especially for placenta, and seem more frequent than in humans. Data generally provide a warning as to the use of ovulation induction and in vitro culture. In human sperm from compromised spermatogenesis, sequence-specific DNA hypomethylation is observed repeatedly. Transmittance of sperm and oocyte DNA methylation defects is possible but, as deduced from the limited data available, largely prevented by selection of gametes for ART and/or non-viability of the resulting embryos. Some evidence indicates that subfertility itself is a risk factor for imprinting diseases. As in mouse, physiological effects from ART are observed in humans. In the human, indications for a broader target for changes in CpG methylation than imprinted DNA sequences alone have been found. In the mouse, a broader range of CpG sequences has not yet been studied. Also, a multigeneration study of systematic ART on epigenetic parameters is lacking. Conclusions: The field of epigenetic inheritance within the lifespan of an individual and between generations (via mitosis and meiosis, respectively) is growing, driven by the expansion of chromatin research. ART can induce epigenetic variation that might be transmitted to the next generation

    Age of G-1 PLUS v5 embryo culture medium is inversely associated with birthweight of the newborn

    No full text
    STUDY QUESTION: Does age of G-1 PLUS v5 embryo culture medium affect IVF outcome? SUMMARY ANSWER: Birthweight of singletons born after IVF showed an inverse association with age of the embryo culture medium, while no association was found between age of culture medium and fertilization rate, embryonic development or ongoing pregnancy. WHAT IS KNOWN ALREADY: It has been reported that IVF culture media can deteriorate during storage, which suggests that the capacity of culture media to support optimal embryo development decreases over time. Some animal studies showed an effect of storage time on embryo development, in contrast to other studies, while the effect of aging culture medium on IVF outcome in humans is unknown. STUDY DESIGN, SIZE, DURATION: We used data on outcome of 1832 IVF/ICSI cycles with fresh embryo transfer, performed in the period 2008-2012 to evaluate the association of fertilization rate, embryonic development, ongoing pregnancy and birthweight of singletons with age of the culture medium (Vitrolife AB G-1 PLUS v5). PARTICIPANTS/MATERIALS, SETTING, METHODS: Age of the culture medium was calculated by subtracting the production date from the date of ovum retrieval. Data analysis included linear regression and logistic regression on continuous and categorical outcomes, respectively. MAIN RESULTS AND THE ROLE OF CHANCE: Age of the culture medium was not associated with fertilization rate (P = 0.543), early cleavage rate (P = 0.155), percentage of embryos containing four or more cells on Day 2 (P = 0.401), percentage of embryos containing eight or more cells on Day 3 (P = 0.175), percentage of embryos with multinucleated blastomeres (P = 0.527), or ongoing pregnancy (P = 0.729). However, birthweight of the newborn was inversely associated with age of the medium(beta = -3.6 g, SE: 1.5 g, P = 0.021), after controlling for possible confounders (day of embryo transfer, number of transferred embryos, child's gender, gestational age at birth, parity, pregnancy complications, maternal smoking, height and weight, and paternal height and weight) and the association was not biased by year of treatment, time since first opening of the bottle or batch variations. This indicates a difference of 234 g in birthweight of newborns for media with an age difference of 65 days. LIMITATIONS, REASONS FOR CAUTION: The results from this study may be specific for the G-1 PLUS v5 culture medium and extrapolation of the results to other media should be done with caution because of the differences in composition and shelf life. WIDER IMPLICATIONS OF THE FINDINGS: Age of G-1 PLUS v5 medium used to culture human embryos affects birthweight of the respective newborn. This could imply that the preimplantation embryo adapts to its in vitro environment with lasting in vivo consequences. Therefore, it is important that companies are transparent about the exact composition of their embryo culture media, which will allow IVF clinics to further investigate the effects of the media or media components on the health of IVF children

    Methylome-wide analysis of IVF neonates that underwent embryo culture in different media revealed no significant differences

    Get PDF
    A growing number of children born are conceived through in vitro fertilisation (IVF), which has been linked to an increased risk of adverse perinatal outcomes, as well as altered growth profiles and cardiometabolic differences in the resultant individuals. Some of these outcomes have also been shown to be influenced by the use of different IVF culture media and this effect is hypothesised to be mediated epigenetically, e.g. through the methylome. As such, we profiled the umbilical cord blood methylome of IVF neonates that underwent preimplantation embryo development in two different IVF culture media (G5 or HTF), using the Infinium Human Methylation EPIC BeadChip. We found no significant methylation differences between the two groups in terms of: (i) systematic differences at CpG sites or regions, (ii) imprinted sites/genes or birth weight-associated sites, (iii) stochastic differences presenting as DNA methylation outliers or differentially variable sites, and (iv) epigenetic gestational age acceleration

    Methylome-wide analysis of IVF neonates that underwent embryo culture in different media revealed no significant differences

    No full text
    A growing number of children born are conceived through in vitro fertilisation (IVF), which has been linked to an increased risk of adverse perinatal outcomes, as well as altered growth profiles and cardiometabolic differences in the resultant individuals. Some of these outcomes have also been shown to be influenced by the use of different IVF culture media and this effect is hypothesised to be mediated epigenetically, e.g. through the methylome. As such, we profiled the umbilical cord blood methylome of IVF neonates that underwent preimplantation embryo development in two different IVF culture media (G5 or HTF), using the Infinium Human Methylation EPIC BeadChip. We found no significant methylation differences between the two groups in terms of: (i) systematic differences at CpG sites or regions, (ii) imprinted sites/genes or birth weight-associated sites, (iii) stochastic differences presenting as DNA methylation outliers or differentially variable sites, and (iv) epigenetic gestational age acceleration
    corecore