863 research outputs found

    Von Neumann's 'No Hidden Variables' Proof: A Re-Appraisal

    Full text link
    Since the analysis by John Bell in 1965, the consensus in the literature is that von Neumann's 'no hidden variables' proof fails to exclude any significant class of hidden variables. Bell raised the question whether it could be shown that any hidden variable theory would have to be nonlocal, and in this sense 'like Bohm's theory.' His seminal result provides a positive answer to the question. I argue that Bell's analysis misconstrues von Neumann's argument. What von Neumann proved was the impossibility of recovering the quantum probabilities from a hidden variable theory of dispersion free (deterministic) states in which the quantum observables are represented as the 'beables' of the theory, to use Bell's term. That is, the quantum probabilities could not reflect the distribution of pre-measurement values of beables, but would have to be derived in some other way, e.g., as in Bohm's theory, where the probabilities are an artefact of a dynamical process that is not in fact a measurement of any beable of the system.Comment: 8 pages, no figures; for Peter Mittelstaedt Festschrift issue of Foundations of Physic

    Addressing the clumsiness loophole in a Leggett-Garg test of macrorealism

    Get PDF
    The rise of quantum information theory has lent new relevance to experimental tests for non-classicality, particularly in controversial cases such as adiabatic quantum computing superconducting circuits. The Leggett-Garg inequality is a "Bell inequality in time" designed to indicate whether a single quantum system behaves in a macrorealistic fashion. Unfortunately, a violation of the inequality can only show that the system is either (i) non-macrorealistic or (ii) macrorealistic but subjected to a measurement technique that happens to disturb the system. The "clumsiness" loophole (ii) provides reliable refuge for the stubborn macrorealist, who can invoke it to brand recent experimental and theoretical work on the Leggett-Garg test inconclusive. Here, we present a revised Leggett-Garg protocol that permits one to conclude that a system is either (i) non-macrorealistic or (ii) macrorealistic but with the property that two seemingly non-invasive measurements can somehow collude and strongly disturb the system. By providing an explicit check of the invasiveness of the measurements, the protocol replaces the clumsiness loophole with a significantly smaller "collusion" loophole.Comment: 7 pages, 3 figure

    Founding quantum theory on the basis of consciousness

    Full text link
    In the present work, quantum theory is founded on the framework of consciousness, in contrast to earlier suggestions that consciousness might be understood starting from quantum theory. The notion of streams of consciousness, usually restricted to conscious beings, is extended to the notion of a Universal/Global stream of conscious flow of ordered events. The streams of conscious events which we experience constitute sub-streams of the Universal stream. Our postulated ontological character of consciousness also consists of an operator which acts on a state of potential consciousness to create or modify the likelihoods for later events to occur and become part of the Universal conscious flow. A generalized process of measurement-perception is introduced, where the operation of consciousness brings into existence, from a state of potentiality, the event in consciousness. This is mathematically represented by (a) an operator acting on the state of potential-consciousness before an actual event arises in consciousness and (b) the reflecting of the result of this operation back onto the state of potential-consciousness for comparison in order for the event to arise in consciousness. Beginning from our postulated ontology that consciousness is primary and from the most elementary conscious contents, such as perception of periodic change and motion, quantum theory follows naturally as the description of the conscious experience.Comment: 41 pages, 3 figures. To be published in Foundations of Physics, Vol 36 (6) (June 2006), published online at http://dx.doi.org/10.1007/s10701-006-9049-

    Output spectrum of a detector measuring quantum oscillations

    Full text link
    We consider a two-level quantum system (qubit) which is continuously measured by a detector and calculate the spectral density of the detector output. In the weakly coupled case the spectrum exhibits a moderate peak at the frequency of quantum oscillations and a Lorentzian-shape increase of the detector noise at low frequency. With increasing coupling the spectrum transforms into a single Lorentzian corresponding to random jumps between two states. We prove that the Bayesian formalism for the selective evolution of the density matrix gives the same spectrum as the conventional master equation approach, despite the significant difference in interpretation. The effects of the detector nonideality and the finite-temperature environment are also discussed.Comment: 8 pages, 6 figure

    Ground State Entanglement Energetics

    Full text link
    We consider the ground state of simple quantum systems coupled to an environment. In general the system is entangled with its environment. As a consequence, even at zero temperature, the energy of the system is not sharp: a projective measurement can find the system in an excited state. We show that energy fluctuation measurements at zero temperature provide entanglement information. For two-state systems which exhibit a persistent current in the ground state, energy fluctuations and persistent current fluctuations are closely related. The harmonic oscillator serves to illustrate energy fluctuations in a system with an infinite number of states. In addition to the energy distribution we discuss the energy-energy time-correlation function in the zero-temperature limit.Comment: 10 pages, 6 figure

    Entangled Quantum Clocks for Measuring Proper-Time Difference

    Full text link
    We report that entangled pairs of quantum clocks (non-degenerate quantum bits) can be used as a specialized detector for precisely measuring difference of proper-times that each constituent quantum clock experiences. We describe why the proposed scheme would be more precise in the measurement of proper-time difference than a scheme of two-separate-quantum-clocks. We consider possibilities that the proposed scheme can be used in precision test of the relativity theory.Comment: no correction, 4 pages, RevTe

    On Properties of Vacuum Axial Symmetric Spacetime of Gravitomagnetic Monopole in Cylindrical Coordinates

    Get PDF
    We investigate general relativistic effects associated with the gravitomagnetic monopole moment of gravitational source through the analysis of the motion of test particles and electromagnetic fields distribution in the spacetime around nonrotating cylindrical NUT source. We consider the circular motion of test particles in NUT spacetime, their characteristics and the dependence of effective potential on the radial coordinate for the different values of NUT parameter and orbital momentum of test particles. It is shown that the bounds of stability for circular orbits are displaced toward the event horizon with the growth of monopole moment of the NUT object. In addition, we obtain exact analytical solutions of Maxwell equations for magnetized and charged cylindrical NUT stars.Comment: 16 pages, 3 figures, 1 tabl

    Action at a distance as a full-value solution of Maxwell equations: basis and application of separated potential's method

    Full text link
    The inadequacy of Li\'{e}nard-Wiechert potentials is demonstrated as one of the examples related to the inconsistency of the conventional classical electrodynamics. The insufficiency of the Faraday-Maxwell concept to describe the whole electromagnetic phenomena and the incompleteness of a set of solutions of Maxwell equations are discussed and mathematically proved. Reasons of the introduction of the so-called ``electrodynamics dualism concept" (simultaneous coexistence of instantaneous Newton long-range and Faraday-Maxwell short-range interactions) have been displayed. It is strictly shown that the new concept presents itself as the direct consequence of the complete set of Maxwell equations and makes it possible to consider classical electrodynamics as a self-consistent and complete theory, devoid of inward contradictions. In the framework of the new approach, all main concepts of classical electrodynamics are reconsidered. In particular, a limited class of motion is revealed when accelerated charges do not radiate electromagnetic field.Comment: ReVTeX file, 24pp. Small corrections which do not have influence results of the paper. Journal reference is adde

    The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease

    Get PDF
    The short chain fatty acid (SCFA) propionate, produced through fermentation of dietary fibre by the gut microbiota, has been shown to alter hepatic metabolic processes that reduce lipid storage. We aimed to investigate the impact of raising colonic propionate production on hepatic steatosis in adults with non-alcoholic fatty liver disease (NAFLD). Eighteen adults were randomised to receive 20g/day of an inulin-propionate ester (IPE), designed to deliver propionate to the colon, or an inulin-control for 42-days in a parallel design. The change in intrahepatocellular lipid (IHCL) following the supplementation period was not different between groups (P=0.082), however IHCL significantly increased within the inulin-control group (20.9±2.9 to 26.8±3.9%; P=0.012; n=9), which was not observed within the IPE group (22.6±6.9 to 23.5±6.8%; P=0.635; n=9). The predominant SCFA from colonic fermentation of inulin is acetate, which in a background of NAFLD and a hepatic metabolic profile that promotes fat accretion, may provide surplus lipogenic substrate to the liver. The increased colonic delivery of propionate from IPE appears to attenuate this acetate- mediated increase in IHC
    corecore