We consider a two-level quantum system (qubit) which is continuously measured
by a detector and calculate the spectral density of the detector output. In the
weakly coupled case the spectrum exhibits a moderate peak at the frequency of
quantum oscillations and a Lorentzian-shape increase of the detector noise at
low frequency. With increasing coupling the spectrum transforms into a single
Lorentzian corresponding to random jumps between two states. We prove that the
Bayesian formalism for the selective evolution of the density matrix gives the
same spectrum as the conventional master equation approach, despite the
significant difference in interpretation. The effects of the detector
nonideality and the finite-temperature environment are also discussed.Comment: 8 pages, 6 figure