1,608 research outputs found

    A formal soundness proof of region-based memory management for object-oriented paradigm.

    Get PDF
    Region-based memory management has been proposed as a viable alternative to garbage collection for real-time applications and embedded software. In our previous work we have developed a region type inference algorithm that provides an automatic compile-time region-based memory management for object-oriented paradigm. In this work we present a formal soundness proof of the region type system that is the target of our region inference. More precisely, we prove that the object-oriented programs accepted by our region type system achieve region-based memory management in a safe way. That means, the regions follow a stack-of-regions discipline and regions deallocation never create dangling references in the store and on the program stack. Our contribution is to provide a simple syntactic proof that is based on induction and follows the standard steps of a type safety proof. In contrast the previous safety proofs provided for other region type systems employ quite elaborate techniques

    Gold as an inflation hedge?

    Get PDF
    This paper attempts to reconcile an apparent contradiction between short-run and long-run movements in the price of gold. The theoretical model suggests a set of conditions under which the price of gold rises over time at the general rate of inflation and hence be an effective hedge against inflation. The model also demonstrates that short-run changes in the gold lease rate, the real interest rate, convenience yield, default risk, the covariance of gold returns with other assets and the dollar/world exchange rate can disturb this equilibrium relationship and generate short-run price volatility. Using monthly gold price data (1976-1999), and cointegration regression techniques, an empirical analysis confirms the central hypotheses of the theoretical model

    Post-weaning Nutritional Programming of Ovarian Developmentin Beef Heifers

    Get PDF
    The nutritional management of replacement females from weaning to breeding is critical to lifetime productivity. Traditionally, cereal grains have been used to develop replacement heifers to attain puberty and enter the breeding system at a younger age. However, overfeeding heifers decreases number of calves weaned, while peri-pubertal caloric restriction increased primordial follicle numbers in the developing ovary. The number of primordial follicles a female has can determine her overall fertility; females with a greater amount of follicles have greater reproductive lifespans. In this study, two groups of heifers were developed to prebreeding status. One group received a control diet (228 kcal ME/BW kg0.75) while the other received a restricted diet (157 kcal ME/BW kg0.75) for 84 days, and were then stepped up to receive a diet containing 277 kcal ME/BW kg0.75. Both groups were evaluated at three different time points for number of primordial follicles. Heifers on the restricted diet had more primordial follicles than control heifers at 13 mo of age. In summary, heifer input costs could be decreased without negatively effecting overall fertility and perhaps improve fertility

    Adjustment of the electric current in pulsar magnetospheres and origin of subpulse modulation

    Full text link
    The subpulse modulation of pulsar radio emission goes to prove that the plasma flow in the open field line tube breaks into isolated narrow streams. I propose a model which attributes formation of streams to the process of the electric current adjustment in the magnetosphere. A mismatch between the magnetospheric current distribution and the current injected by the polar cap accelerator gives rise to reverse plasma flows in the magnetosphere. The reverse flow shields the electric field in the polar gap and thus shuts up the plasma production process. I assume that a circulating system of streams is formed such that the upward streams are produced in narrow gaps separated by downward streams. The electric drift is small in this model because the potential drop in narrow gaps is small. The gaps have to drift because by the time a downward stream reaches the star surface and shields the electric field, the corresponding gap has to shift. The transverse size of the streams is determined by the condition that the potential drop in the gaps is sufficient for the pair production. This yields the radius of the stream roughly 10% of the polar cap radius, which makes it possible to fit in the observed morphological features such as the "carousel" with 10-20 subbeams and the system of the core - two nested cone beams.Comment: 8 pages, 1 figur

    Spores: A Type-Based Foundation for Closures in the Age of Concurrency and Distribution

    Get PDF
    Functional programming (FP) is regularly touted as the way forward for bringing parallel, concurrent, and distributed programming to the mainstream. The popularity of the rationale behind this viewpoint (immutable data transformed by function application) has even lead to a number of object-oriented (OO) programming languages adopting functional features such as lambdas (functions) and thereby function closures. However, despite this established viewpoint of FP as an enabler, reliably distributing function closures over a network, or using them in concurrent environments nonetheless remains a challenge across FP and OO languages. This paper takes a step towards more principled distributed and concurrent programming by introducing a new closure-like abstraction and type system, called spores, that can guarantee closures to be serializable, thread-safe, or even have general, custom user-defined properties. Crucially, our system is based on the principle of encoding type information corresponding to captured variables in the type of a spore. We prove our type system sound, implement our approach for Scala, evaluate its practicality through an small empirical study, and show the power of these guarantees through a case analysis of real-world distributed and concurrent frameworks that this safe foundation for migratable closures facilitates

    Typing in Model Management

    Get PDF
    International audienceModel management is essential for coping with the complexity introduced by the increasing number and varied nature of artifacts involved in MDE-based projects. Global Model Management (GMM) addresses this issue enabling the representation of artifacts, particularly transformation composition and execution, by a model called a megamodel. Typing information about artifacts can be used for preventing type errors during execution. In this work, we present a type system for GMM that improves its current typing approach and enables formal reasoning about the type of artifacts within a megamodel. This type system is able to capture non-trivial situations such as the use of higher order transformations

    The role of disulfide bond replacements in analogues of the Tarantula toxin ProTx-II and their effects on inhibition of the voltage-gated sodium ion channel Nav1.7

    Get PDF
    Spider venom toxins, such as Protoxin-II (ProTx-II), have recently received much attention as selective Nav1.7 channel blockers, with potential to be developed as leads for the treatment of chronic nocioceptive pain. ProTx-II is a 30-amino acid peptide with three disulfide bonds that has been reported to adopt a well-defined inhibitory cystine knot (ICK) scaffold structure. Potential drawbacks with such peptides include poor pharmacodynamics and potential scrambling of the disulfide bonds in vivo. In order to address these issues, in the present study we report the solid-phase synthesis of lanthionine-bridged analogues of ProTx-II, in which one of the three disulfide bridges is replaced with a thioether linkage, and evaluate the biological properties of these analogues. We have also investigated the folding and disulfide bridging patterns arising from different methods of oxidation of the linear peptide precursor. Finally, we report the X-ray crystal structure of ProTx-II to atomic resolution; to our knowledge this is the first crystal structure of an ICK spider venom peptide not bound to a substrate

    Compilation of extended recursion in call-by-value functional languages

    Get PDF
    This paper formalizes and proves correct a compilation scheme for mutually-recursive definitions in call-by-value functional languages. This scheme supports a wider range of recursive definitions than previous methods. We formalize our technique as a translation scheme to a lambda-calculus featuring in-place update of memory blocks, and prove the translation to be correct.Comment: 62 pages, uses pi

    Selection and enrichment of microbial species with an increased lignocellulolytic phenotype from a native soil microbiome by activity-based probing

    Get PDF
    Multi-omic analyses can provide information on the potential for activity within a microbial community but often lack specificity to link functions to cell, primarily offer potential for function or rely on annotated databases. Functional assays are necessary for understanding in situ microbial activity to better describe and improve microbiome biology. Targeting enzyme activity through activity-based protein profiling enhances the accuracy of functional studies. Here, we introduce a pipeline of coupling activity-based probing with fluorescence-activated cell sorting, culturing, and downstream activity assays to isolate and examine viable populations of cells expressing a function of interest. We applied our approach to a soil microbiome using two activity-based probes to enrich for communities with elevated activity for lignocellulose-degradation phenotypes as determined by four fluorogenic kinetic assays. Our approach efficiently separated and identified microbial members with heightened activity for glycosyl hydrolases, and by expanding this workflow to various probes for other function, this process can be applied to unique phenotype targets of interest.Bio-organic Synthesi

    Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions

    Full text link
    A microscopic heterogeneous system under random influence is considered. The randomness enters the system at physical boundary of small scale obstacles as well as at the interior of the physical medium. This system is modeled by a stochastic partial differential equation defined on a domain perforated with small holes (obstacles or heterogeneities), together with random dynamical boundary conditions on the boundaries of these small holes. A homogenized macroscopic model for this microscopic heterogeneous stochastic system is derived. This homogenized effective model is a new stochastic partial differential equation defined on a unified domain without small holes, with static boundary condition only. In fact, the random dynamical boundary conditions are homogenized out, but the impact of random forces on the small holes' boundaries is quantified as an extra stochastic term in the homogenized stochastic partial differential equation. Moreover, the validity of the homogenized model is justified by showing that the solutions of the microscopic model converge to those of the effective macroscopic model in probability distribution, as the size of small holes diminishes to zero.Comment: Communications in Mathematical Physics, to appear, 200
    corecore