View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Spores: A Type-Based Foundation for Closures in the
Age of Concurrency and Distribution

Heather Miller, Philipp Haller!, and Martin Odersky

EPFL and Typesafe, Inc.*
{heather.miller, martin.odersky}@epfl.ch and philipp.haller@typesafe. com!

Abstract. Functional programming (FP) is regularly touted as the way forward
for bringing parallel, concurrent, and distributed programming to the mainstream.
The popularity of the rationale behind this viewpoint has even led to a number of
object-oriented (OO) programming languages outside the Smalltalk tradition adopt-
ing functional features such as lambdas and thereby function closures. However,
despite this established viewpoint of FP as an enabler, reliably distributing func-
tion closures over a network, or using them in concurrent environments nonethe-
less remains a challenge across FP and OO languages. This paper takes a step to-
wards more principled distributed and concurrent programming by introducing a
new closure-like abstraction and type system, called spores, that can guarantee clo-
sures to be serializable, thread-safe, or even have custom user-defined properties.
Crucially, our system is based on the principle of encoding type information cor-
responding to captured variables in the type of a spore. We prove our type system
sound, implement our approach for Scala, evaluate its practicality through a small
empirical study, and show the power of these guarantees through a case analysis
of real-world distributed and concurrent frameworks that this safe foundation for
closures facilitates.

Keywords: closures, functions, distributed programming, concurrent program-
ming, type systems

1 Introduction

With the growing trend towards cloud computing, mobile applications, and big data, dis-
tributed programming has entered the mainstream. Popular paradigms in software engi-
neering such as software as a service (SaaS), RESTful services, or the rise of a multitude
of systems for big data processing and interactive analytics, evidence this trend.
Meanwhile, at the same time, functional programming has been undeniably gaining
traction in recent years, as is evidenced by the ongoing trend of traditionally object-
oriented or imperative languages being extended with functional features, such as lamb-
das in Java 8 [[7], C++11 [9], and Visual Basic 9 [[16], the perceived importance of func-
tional programming in general empirical studies on software developers [[17], and the
popularity of functional programming massively online open courses (MOOCs) [20].
One reason for the rise in popularity of functional programming languages and fea-
tures within object-oriented communities is the basic philosophy of transforming im-
mutable data by applying first-class functions, and the observation that this functional
style simplifies reasoning about data in parallel, concurrent, and distributed code. A pop-
ular and well-understood example of this style of programming for which many popular

https://core.ac.uk/display/148000398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 H. Miller, P. Haller, and M. Odersky

frameworks have come to fruition is functional data-parallel programming. Examples
across functional and object-oriented paradigms include Java 8’s monadic-style option-
ally parallel collections [[7], Scala’s parallel [25] and concurrent dataflow [26] collections,
Data Parallel Haskell [2], CnC [[L]], Nova [3], and Haskell’s Par monad [|12] to name a few.

In the context of distributed programming, data-parallel frameworks like MapRe-
duce [4] and Spark [31] are designed around functional patterns where closures are trans-
mitted across cluster nodes to large-scale persistent datasets. As a result of the “big data”
revolution, these frameworks have become very popular, in turn further highlighting the
need to be able to reliably and safely serialize and transmit closures over the network.

However, there’s trouble in paradise. For both object-oriented and functional lan-
guages, there still exist numerous hurdles at the language-level for even these most basic
functional building blocks, closures, to overcome in order to be reliable and easy to reason
about in a concurrent or distributed setting.

In order to distribute closures, one must be able to serialize them — a goal that remains
tricky to reliably achieve not only in object-oriented languages but also in pure functional
languages like Haskell:

1 sendFunc :: SendPort (Int -> Int) -> Int -> ProcessM ()
2 sendFunc p x = sendChan p (\y -> x +y + 1)

In this example, in function sendFunc we are sending the lambda (\y -> x + y + 1) on
channel p. The lambda captures variable x, a parameter of sendFunc. Serializing the lambda
requires serializing also its captured variables. However, when looking up a serializer for
the lambda, only the type of the lambda is taken into account; however, it doesn’t tell us
anything about the types of its captured variables, which makes it impossible in Haskell
to look up serializers for them.

In object-oriented languages like Java or C#, serialization is solved differently — the
runtime environment is designed to be able to serialize any object, reflectively. While this
“universal” serialization might seem to solve the problem of languages like Haskell that
cannot rely on such a mechanism, serializing closures nonetheless remains surprisingly
error-prone. For example, attempting to serialize a closure with transitive references to
objects that are not marked as serializable will crash at runtime, typically with no compile-
time checks whatsoever. The kicker is that it is remarkably easy to accidentally and un-
knowingly create such a problematic transitive reference, especially in an object-oriented
language.

For example, consider the following use of a distributed collection in Scala with
higher-order functions map and reduce (using Spark):

1 class MyCoolRddApp {

2 val log = new Log(...)

3 def shift(p: Int): Int = ...

4 “ee

5 def work(rdd: RDD[Int]) {

6 rdd.map(x => x + shift(x)).reduce(...)
7 }

8}

In this example, the closure (x => x + shift(x)) is passed to the map method of the
distributed collection rdd which requires serializing the closure (as, in Spark, parts of the
data structure reside on different machines). However, calling shift inside the closure
invokes a method on the enclosing object this. Thus, the closure is capturing, and must
therefore serialize, this. If Log, a field of this, is not serializable, this will fail at runtime.

Spores: A Type-Based Foundation for Closures in the Age of Concurrency & Distribution

In fact, closures suffer not only from the problems shown in these two examples; there
are numerous more hazards that manifest across programming paradigms. To provide a
glimpse, closure-related hazards related to concurrency and distribution include:

— accidental capture of non-serializable variables (including this);

— language-specific compilation schemes, creating implicit references to objects that
are not serializable;

— transitive references that inadvertently hold on to excessively large object graphs,
creating memory leaks;

— capturing references to mutable objects, leading to race conditions in a concurrent
setting;

— unknowingly accessing object members that are not constant such as methods, which
in a distributed setting can have logically different meanings on different machines.

Given all of these issues, exposing functions in public APIs is a source of headaches
for authors of concurrent or distributed frameworks. Framework users who stumble across
any of these issues are put in a position where it’s unclear whether or not the encountered
issue is a problem on the side of the user or the framework, thus often adversely hitting
the perceived reliability of these frameworks and libraries.

We argue that solving these problems in a principled way could lead to more confi-
dence on behalf of library authors in exposing functions in APIs, thus leading to a poten-
tially wide array of new frameworks.

This paper takes a step towards more principled function-passing style by introducing
a type-based foundation for closures, called spores. Spores are a closure-like abstraction
and type system which is designed to avoid typical hazards of closures. By including
type information of captured variables in the type of a spore, we enable the expression of
type-based constraints for captured variables, making spores safer to use in a concurrent
or distributed setting. We show that this approach can be made practical by automatically
synthesizing refinement types using macros, and by leveraging local type inference. Using
type-based constraints, spores allow expressing a variety of “safe” closures.

To express safe closures with transitive properties such as guaranteed serializability,
or closures capturing only deeply immutable types, spores support type constraints based
on type classes which enforce transitive properties. In addition, implicit macros in Scala
enable integration with type systems that enforce transitive properties using generics or
annotated types. Spores also support user-defined type constraints. Finally, we argue that
by principle of a type-based approach, spores can potentially benefit from optimization,
further safety via type system extensions, and verification opportunities.

The design of spores is guided by the following principles:

— Type-safety. Spores should be able to express type-based properties of captured vari-
ables in a statically safe way. Including type information of captured variables in the
type of a spore creates a number of previously impossible opportunities; it facili-
tates the verification of closure-heavy code; it opens up the possibility for IDEs to
assist in safe closure creation, advanced refactoring, and debugging support; it en-
ables compilers to implement safe transformations that can further simplify the use
of safe closures, and it makes it possible for spores to integrate with type class-based
frameworks like Scala/pickling [[19].

4 H. Miller, P. Haller, and M. Odersky

— Extensibility. Given types which include information about what a closure cap-
tures, libraries and frameworks should be able to restrict the types that are captured
by spores. Enforcing these type constraints should not be limited to serializability,
thread-safety, or other pre-defined properties, however; spores should enable cus-
tomizing the semantics of variable capture based on user-defined types. It should be
possible to use existing type-based mechanisms to express a variety of user-defined
properties of captured types.

— Ease of Use. Spores should be lightweight to use, and be able to integrate seamlessly
with existing practice. It should be possible to capitalize on the benefits of precise
types while at the same time ensuring that working with spores is never too verbose,
thanks to the help of automatic type synthesis and inference. At the same time, frame-
works like Spark, for which the need for controlled capture is central, should be able
to use spores, meanwhile requiring only minimal changes in application code.

— Practicality. Spores should be practical to use in general, as well as be practical
for inclusion in the full-featured Scala language. They should be practical in a vari-
ety of real-world scenarios (for use with Spark, Akka, parallel collections, and other
closure-heavy code). At the same time, to enable a robust integration with the host
language, existing type system features should be reused instead of extended.

— Reliability for API Designers. Spores should enable library authors to confidently
release libraries that expose functions in user-facing APIs without concern of runtime
exceptions or other dubious errors falling on their users.

1.1 Selected Related Work

Cloud Haskell [5] provides statically guaranteed-serializable closures by either rejecting
environments outright, or by allowing manual capturing, requiring the user to explic-
itly specify and pre-serialize the environment in combination with top-level functions
(enforced using a new Static type constructor). That is, in Cloud Haskell, to create a
serializable closure, one must explicitly pass the serialized environment as a parameter
to the function — this requires users to have to refactor closures they wish to be made
serializable. In contrast, spores do not require users to manually factor out, manage, and
serialize their environment; spores require only that what is captured is specified, not
how. Furthermore, spores are more general than Cloud Haskell’s serializable closures;
user-defined type constraints enable spores to express more properties than just serializ-
ability, like thread-safety, immutability, or any other user-defined property. In addition,
spores allow restricting captured types in a way that is integrated with object-oriented
concerns, such as subtyping and open class hierarchies.

C++11 [9] has introduced syntactic rules for explicit capture specifications that indi-
cate which variables are captured and how (by reference or by copy). Since the capturing
semantics is purely syntactic, a capture specification is only enforced at closure creation
time. Thus, when composing two closures, the capture semantics is not preserved. Spores,
on the other hand, capture such specifications at the level of types, enabling composabil-
ity. Furthermore, spores’ type constraints enable more general type-directed control over
capturing than capture-by-value or capture-by-reference alone.

A preliminary proposal for closures in the Rust language [[13] allows describing the
closed-over variables in the environment using closure bounds, requiring captured types
to implement certain traits. Closure bounds are limited to a small set of built-in traits to

Spores: A Type-Based Foundation for Closures in the Age of Concurrency & Distribution

enforce properties like sendability. Spores on the other hand enable user-defined property
definition, allowing for greater customizability of closure capturing semantics. Further-
more, unlike spores, the environment of a closure in Rust must always be allocated on
the stack (although not necessarily the top-most stack frame).

Java 8 [[7] introduces a limited type of closure which is only permitted to capture
variables that are effectively-final. Like with Scala’s standard closures, variable capture is
implicit, which can lead to accidental captures that spores are designed to avoid. Although
serializability can be requested at the level of the type system using newly-introduced
intersection types in Java 8, there is no guarantee about the absence of runtime exceptions,
as there is for spores. Finally, spores additionally allow specifying type-based constraints
for captured variables that are more general than serializability alone.

We discuss other related work in Section [j.

1.2 Contributions

This paper makes the following contributions:

— We introduce a closure-like abstraction and type system, called “spores,” which
avoids typical hazards when using closures in a concurrent or distributed setting
through controlled variable capture and customizable user-defined constraints for
captured types.

— We introduce an approach for type-based constraints that can be combined with ex-
isting type systems to express a variety of properties from the literature, including,
but not limited to, serializability and thread-safety/immutability. Transitive properties
can be lifted to spore types in a variety of ways, e.g., using type classes.

— We present a formalization of spores with type constraints and prove soundness of
the type system.

— We present an implementation of spores in and for the full Scala language.

— We (a) demonstrate the practicality of spores through a small empirical study using
a collection of real-world Scala programs, and (b) show the power of the guarantees
spores provide through case studies using parallel and distributed frameworks.

2 Spores

Spores are a closure-like abstraction and type system which aims to give users a principled
way of controlling the environment which a closure can capture. This is achieved by (a)
enforcing a specific syntactic shape which dictates how the environment of a spore is
declared, and (b) providing additional type-checking to ensure that types being captured
have certain properties. A crucial insight of spores is that, by including type information
of captured variables in the type of a spore, type-based constraints for captured variables
can be composed and checked, making spores safer to use in a concurrent, distributed, or
in an arbitrary settings where closures must be controlled.

Below, we describe the syntactic shape of spores, and in Section 2.2 we describe the
spore type. In Section 2.4 we informally describe the type system, and how to add user-
defined constraints to customize what types a spore can capture.

! https://github.com/scala/spores

https://github.com/scala/spores

6 H. Miller, P. Haller, and M. Odersky

1 spore {

2 val yl: S1 = <exprl>

3 } spore header

4 val yn: Sn = <exprn>

5 (x: T) => {

6 /.. }closure/spore body
7

8 } ’

Fig. 1: The syntactic shape of a spore.
2.1 Spore Syntax

A spore is a closure with a specific shape that dictates how the environment of a spore is
declared. The shape of a spore is shown in Figure [I. A spore consists of two parts:

— the spore header, composed of a list of value definitions.
— the spore body (sometimes referred to as the “spore closure™), a regular closure.

The characteristic property of a spore is that the spore body is only allowed to access
its parameter, the values in the spore header, as well as top-level singleton objects (public,
global state). In particular, the spore closure is not allowed to capture variables in the
environment. Only an expression on the right-hand side of a value definition in the spore
header is allowed to capture variables.

By enforcing this shape, the environment of a spore is always declared explicitly in
the spore header, which avoids accidentally capturing problematic references. Moreover,
importantly for object-oriented languages, it’s no longer possible to accidentally capture
the this reference.

1 { 1 spore {
2 val yl: S1 = <exprl> 2 val yl: S1 = <exprl>
3 ce 3 -
4 val yn: Sn = <exprn> 4 val yn: Sn = <exprn>
5 (x: T) => { 5 (x: T) => {
6 /o 6 /...
7 } 7 }
8 ¥ 8 }
(a) A closure block. (b) A spore.

Fig. 2: The evaluation semantics of a spore is equivalent to that of a closure, obtained by
simply leaving out the spore marker.

Evaluation Semantics The evaluation semantics of a spore is equivalent to a closure
obtained by leaving out the spore marker, as shown in Figure . In Scala, the block shown
in Figure P4 first initializes all value definitions in order and then evaluates to a closure
that captures the introduced local variables y1, ..., yn. The corresponding spore, shown
in Figure PY has the exact same evaluation semantics. Interestingly, this closure shape
is already used in production systems such as Spark in an effort to avoid problems with
accidentally captured references, such as this. However, in systems like Spark, the above
shape is merely a convention that is not enforced.

2.2 The spore Type

Figure § shows Scala’s arity-1 function type and the arity-1 spore type.E Functions are

2For simplicity, we omit Function1’s definitions of the andThen and compose methods.

Spores: A Type-Based Foundation for Closures in the Age of Concurrency & Distribution

1 trait Spore[-A, +B]
1 trait Functionl[-A, +B] { 2 extends Functioni[A, B] {
2 def apply(x: A): B 3 type Captured
3 } 4 type Excluded

5 ¥

a) Scala’s arity-1 function type.
@ Y P (b) The arity-1 Spore type.

Fig. 3: The Spore type.

val s = spore {
val yl: String = expri;

1

2 .

3 val y2: Int = expr2; 1 Spore[Int, String] {

4 (x: Int) => yl + y2 + X 2 type Captured = (String, Int)
5 } 3 }

(a) A spore s which captures a String and an Int (b) s’s corresponding type.

in its spore header.

Fig. 4: An example of the Captured type member.
Note: we omit the Excluded type member for simplicity; we detail it later in Section .4,

contravariant in their argument type A (indicated using -) and covariant in their result type
B (indicated using +). The apply method of Functioni is abstract; a concrete implementa-
tion applies the body of the function that is being defined to the parameter x.

Individual spores have refinement types of the base Spore type, which, to be compati-
ble with normal Scala functions, is itself a subtype of Functioni. Like functions, spores are
contravariant in their argument type A, and covariant in their result type B. Unlike a nor-
mal function, however, the Spore type additionally contains information about captured
and excluded types. This information is represented as (potentially abstract) Captured and
Excluded type members. In a concrete spore, the Captured type is defined to be a tuple with
the types of all captured variables. Section .4 introduces the Excluded type member.

2.3 Basic Usage

Definition A spore can be defined as shown in Figure §d, with its corresponding type
shown in Figure #H. As can be seen, the types of the environment listed in the spore header
are represented by the Captured type member in the spore’s type.

Using Spores in APIs Consider the following method definition:
def sendOverWire(s: Spore[Int, Int]): Unit = ...

In this example, the Captured (and Excluded) type member is not specified, meaning it is
left abstract. In this case, so long as the spore’s parameter and result types match, a spore
type is always compatible, regardless of which types are captured.

Using spores in this way enables libraries to enforce the use of spores instead of plain
closures, thereby reducing the risk for common programming errors (see Section [§ for
detailed case studies), even in this very simple form. Later sections show more advanced
ways in which library authors can control the capturing semantics of spores.

Composition Like normal functions, spores can be composed. By representing the en-
vironment of spores using refinement types, it is possible to preserve the captured type
information (and later, constraints) of spores when they are composed.

For example, assume we are given two spores s1 and s2 with types:

8 H. Miller, P. Haller, and M. Odersky

sl: Spore[Int, String] { type Captured
s2: Spore[String, Int] { type Captured

(String, Int) }
Nothing }

The fact that the Captured type in s2 is defined to be Nothing means that the spore does not
capture anything (Nothing is Scala’s bottom type). The composition of s1 and s2, written
s1 compose s2, would therefore have the following refinement type:

Spore[String, String] { type Captured = (String, Int) }

Note that the captured type member of the result spore is equal to the Captured type of
s1, since it is guaranteed that the result spore does not capture more than what s1 already
captures. Thus, not only are spores composable, but so are their (refinement) types.

Implicitly Converting Functions to Spores The design of spores was guided in part by
a desire to make them easy to use, and easy to integrate in already closure-heavy code.
Spores, as so far proposed, introduce considerable verbosity in pursuit of the requirement
to explicitly define the spore’s environment.

Therefore, it is also possible to use function literals as spores if they satisfy the spore
shape constraints. To support this, an implicit conversiond macrof is provided which con-
verts regular functions to spores, but only if the converted function is a literal: only then
is it possible to enforce the spore shape.

For-Comprehensions Converting functions to spores opens up the use of spores in a
number of other situations; most prominently, for-comprehensions (Scala’s version of
Haskell’s do-notation) in Scala are desugared to invocations of the higher-order map,
flatMap, and filter methods, each of which take normal functions as arguments.E

In situations where for-comprehension closures capture variables, preventing them
from being converted implicitly to spores, we introduce an alternative syntax for capturing
variables in spores: an object that is referred to using a so-called “stable identifier” id can
additionally be captured using the syntax capture(id) .

This enables the use of spores in for-comprehensions, since it’s possible to write:

for (a <- genl; b <- capture(gen2)) yield capture(a) + b
Note that superfluous capture expressions are not harmful. Thus, it is legal to write:
for (a <- capture(genl); b <- capture(gen2)) yield capture(a) + capture(b)

This allows the use of capture in a way that does not require users to know how for-
comprehensions are desugared. In Section | we show how capture and the implicit con-
version of functions to spores enables the use of for-comprehensions in the context of
distributed programming with spores.

3In Scala, implicit conversions can be thought of as methods which can be implicitly invoked
based upon their type, and whether or not they are present in implicit scope.

*In Scala, macros are methods that are transparently loaded by the compiler and executed (or
expanded) during compilation. A macro is defined like a normal method, but it is linked using the
macro keyword to an additional method that operates on abstract syntax trees.

SFor-comprehensions are desugared before implicit conversions are inserted; thus, no change
to the Scala compiler is necessary.

%1n Scala, a stable identifier is basically a selection p.x where p is a path and x is an identifier
(see Scala Language Specification [23], Section 3.1).

Spores: A Type-Based Foundation for Closures in the Age of Concurrency & Distribution

2.4 Advanced Usage and Type Constraints

In this section, we describe two different kinds of “type constraints” which enable more
fine-grained control over closure capture semantics; excluded types which prevent certain
types from being captured, and context bounds for captured types which enforce certain
type-based properties for all captured variables of a spore. Importantly, all of these dif-
ferent kinds of constraints compose, as we will see in later subsections.

Throughout this paper, we use as a motivating example hazards that arise in concur-
rent or distributed settings. However, note that the system of type constraints described
henceforth is general, and can be applied to very different applications and sets of types.

Excluded Types Libraries and frameworks for concurrent and distributed programming,
such as Akka [29] and Spark, typically have requirements to avoid capturing certain types
in closures that are used together with library-provided objects and methods. For example,
when using Akka, one should not capture variables of type Actor; in Spark, one should
not capture variables of type SparkContext.

Such restrictions can be expressed in our system by excluding types from being cap-
tured by spores, using refinements of the Spore type presented in Section 2.2. For example,
the following refinement type forbids capturing variables of type Actor:

1 type SporeNoActor[-A, +B] = Spore[A, B] {
2 type Excluded <: No[Actor]

Note the use of the auxiliary type constructor No (defined as trait No[-T]): it enables the
exclusion of multiple types while supporting desired sub-typing relationships.
For example, exclusion of multiple types can be expressed as follows:

1 type SafeSpore = Spore[Int, String] {

2 type Excluded = No[Actor] with No[Util]

30}

Given Scala’s sub-typing rules for refinement types, a spore refinement excluding a super-
set of types excluded by an “otherwise type-compatible” spore is a subtype. For example,
SafeSpore is a subtype of SporeNoActor[Int, String].

Subtyping Using some frameworks typically user-defined subclasses are created that
extend framework-provided types. However, the extended types are sometimes not safe
to be captured. For example, in Akka, user-created closures should not capture variables
of type Actor and any subtypes thereof. To express such a constraint in our system we
define the No type constructor to be contravariant in its type parameter; this is the meaning
of the - annotation in the type declaration trait No[-T].
As aresult, the following refinement type is a supertype of type
SporeNoActor[Int, Int] defined above (we assume MyActor is a subclass of Actor):

1 type MySpore = Spore[Int, Int] {
2 type Excluded <: No[MyActor]

It is important that MySpore is a supertype and not a subtype of

SporeNoActor[Int, Int], since an instance of MySpore could capture some other subclass
of Actor which is not itself a subclass of MyActor. Thus, it would not be safe to use an
instance of MySpore where an instance of SporeNoActor[Int, Int] is required. On the
other hand, an instance of SporeNoActor[Int, Int] is safe to use in place of an instance
of MySpore, since it is guaranteed not to capture Actor or any of its subclasses.

10 H. Miller, P. Haller, and M. Odersky

Reducing Excluded Boilerplate Given that the design of spores was guided in part by
a desire to make them easy to use, and easy to integrate in already closure-heavy code
with minimal changes, one might observe that the Spore type with Excluded types intro-
duces considerable verbosity. This is easily solved in practice by the addition of a macro
without[T] which takes a type parameter T and rewrites the spore type to take into consid-
eration the excluded type T. Thus, in the case of the SafeSpore example, the same spore
refinement type can easily be synthesized inline in the definition of a spore value:

1 val safeSpore = spore {

2 val a =

3 val b = ...

4 (x: T) => { ... }

5 }.without[Actor].without[Util]

Context Bounds for Captured Types The fact that for spores a certain shape is enforced
is very useful. However, in some situations this is not enough. For example, a common
source of race conditions in data-parallel frameworks manifests itself when users capture
mutable objects. Thus, a user might want to enforce that closures only capture immutable
objects. However, such constraints cannot be enforced using the spore shape alone (cap-
tured objects are stored in constant values in the spore header, but such constants might
still refer to mutable objects).

In this section, we introduce a form of type-based constraints called “context bounds”
which enforce certain type-based properties for all captured variables of that spore.E

Taking another example, it might be necessary for a spore to require the availability
of instances of a certain type class for the types of all of its captured variables. A typical
example for such a type class is Pickler: types with an instance of the Pickler type class
can be pickled using a new type-based pickling framework for Scala [[19]. To be able to
pickle a spore, it’s necessary that all its captured types have an instance of picklerH

Spores allow expressing such a requirement using a notion of implicit properties. The
idea is that if there is an implicit value? of type Property[Pickler] in scope at the point
where a spore is created, then it is enforced that all captured types in the spore header
have an instance of the Pickler type class

1 import spores.withPickler

2

3 spore {

4 val name: String = <expril>
5 val age: Int = <expr2>

6 (x: String) => { ...}

7}

While an imported property does not have an impact on how a spore is constructed (be-
sides the property import), it has an impact on the result type of the spore macro. In the
above example, the result type would be a refinement of the Spore type:E

"The name “context bound” is used in Scala to refer to a particular kind of implicit parameter
that is added automatically if a type parameter has declared such a context bound. Our proposal
essentially adds context bounds to type members.

8 A spore can be pickled by pickling its environment and the fully-qualified class name of its
corresponding function class.

° An implicit value is a value in implicit scope that is statically selected based on its type.

1%In the code example, implicitly[T] returns the uniquely-defined implicit value of T which is
in scope at the invocation site.

Spores: A Type-Based Foundation for Closures in the Age of Concurrency & Distribution

1 Spore[String, Int] {

2 type Captured = (String, Int)

3 implicit val ev$0 = implicitly[Pickler[Captured]]
4}

For each property that is imported, the resulting spore refinement type contains an implicit
value with the corresponding type class instance for type Captured.

Expressing context bounds in APIs Using the above types and implicits, it’s also pos-
sible for a method to require argument spores to have certain context bounds. For exam-
ple, requiring argument spores to have picklers defined for their captured types can be
achieved as follows:

def m[A, B](s: Spore[A, B])(implicit p: Pickler[s.Captured]) = ...

Defining Custom Properties Properties can be introduced using the Property trait (pro-
vided by the spores library): trait property[C[_]]

As a running example, we will be defining a custom property for immutable types. A
custom property can be introduced using a generic trait, and an implicit “property” object
that mixes in the above Property trait:

1 object safe {

2 trait Immutable[T]

3 implicit object immutableProp extends Property[Immutable]
4 e

50}

The next step is to mark selected types as immutable by defining an implicit object ex-
tending the desired list of types, each type wrapped in the Immutable type constructor:

object safe {

1
2 .
3 import scala.collection.immutable.{Map, Set, Seq}

4 implicit object collections extends Immutable[Map[_, _]] with
5 Immutable[Set[_]] with Immutable[Seq[_]] with ...

6)

The above definitions allow us to create spores that are guaranteed to capture only types
T for which an implicit of type Immutable[T] exists.

It’s also possible to define compound properties by mixing in multiple traits into an
implicit property object:

implicit object myProps extends Property[Pickler] with Property[Immutable]

By making this compound property available in a scope within which spores are created
(for example, using an import), it is enforced that those spores have both the context
bound Pickler and the context bound Immutable.

Composition Now that we’ve introduced type constraints in the form of excluded types
and context bounds, we present generalized composition rules for the types of spores with
such constraints.

To precisely describe the composition rules, we introduce the following notation: the
function Fxcluded returns, for a given refinement type, the set of types that are excluded;
the function Captured returns, for a given refinement type, the list of types that are
captured. Using these two mathematical functions, we can precisely specify how the type
members of the resulting spore refinement type are computed. (We use the syntax .type
to refer to the singleton types of the argument spores and the result, respectively.)

11

12 H. Miller, P. Haller, and M. Odersky

1. Captured(res.type) = Captured(sl.type), Captured(s2.type)
2. Ezcluded(res.type) = {T € Euzcluded(sl.type) U Excluded(s2.type) | T ¢
Captured(sl.type), Captured(s2.type)}

The first rule expresses the fact that the sequence of captured types of the resulting
refinement type is simply the concatenation of the captured types of the argument spores.
The second rule expresses the fact that the set of excluded types of the result refinement
type is defined as the set of all types that are excluded by one of the argument spores, but
that are not captured by any of the argument spores.

For example, assume two spores s1 and s2 with types:

1 Spore[Int, String] { 1 Spore[String, Int] {
2 type Captured = (Int, Util) 2 type Captured = (String, Int)
3 type Excluded = No[Actor] 3 type Excluded = No[Actor] with No[Util]
4} 4}
(a) Type of spore s1. (b) Type of spore s2.

The result of composing the two spores, s1 compose s2, thus has the following type:

1 Spore[String, String] {

2 type Captured = (Int, Util, String, Int)
3 type Excluded = No[Actor]

4}

Loosening constraints Given that type constraints compose, it’s evident that as spores

compose, type constraints can monotonically increase in number. Thus, it’s important to

note that it’s also possible to soundly loosen constraints using regular type widening.
Let’s say we have a spore with the following (too elaborate) refinement type:

1 val s2: Spore[String, Int] {

2 type Captured = (String, Int)

3 type Excluded = No[Actor] with No[Util]
4}

Then we can soundly drop constraints by using a supertype such as MySafeSpore:

1 type MySafeSpore = Spore[String, Int] {
2 type Captured

3 type Excluded <: No[Actor]

4}

2.5 Transitive Properties

Transitive properties like picklability or immutability are not enforced through the spores
type system. Rather, spores were designed for extensibility; we ensure that deep checking
can be applied to spores as follows.

An initial motivation was to be able to require type class instances for captured types,
e.g., picklability; spores integrate seamlessly with Scala/pickling [|19].

Transitive properties expressed using known techniques, e.g., generics (Zibin etal’s
OIG]J system [32] for transitive immutability) or annotated types, can be enforced for
captured types using custom spore properties. Instead of merely tagging types, implicit
macros can generate type class instances for all types satisfying a predicate. For example,
using OIGJ we can define an implicit macro

implicit def isImmutable[T: TypeTag]: Immutable[T]

which returns a type class instance for all types of the shape c[0, Immut] thatis deeply
immutable (analyzing the TypeTag). Custom spore properties requiring type classes con-
structed in such a way enable transitive checking for a variety of such (pluggable) exten-
sions, including compositions thereof (e.g., picklability/immutability).

Spores: A Type-Based Foundation for Closures in the Age of Concurrency & Distribution

3 Formalization

tu=z variable
|[(z:T)=1 abstraction
|tt application
[letz =t¢int let binding
[{l =1t} record construction
| t.1 selection
|spore{z:T =t;pn;(x:T) =1} spore
| import pn int property import
| t compose t spore composition
vo=(x:T)=>t abstraction
| {I = v} record value

| spore{z:T =wv;pn;(x:T) =1t} sporevalue

T:=T=T function type
[{I:T} record type
| S
S:=T=T{typeC=T;pn} spore type
| T =T {typeC; pn} abstract spore type
Pepn—T property map
T eP(T) type family
IFi=a:T type environment
A ==7pn property environment

Fig. 5: Core language syntax

We formalize spores in the context of a standard, typed lambda calculus with records.
Apart from novel language and type-systematic features, our formal development follows
a well-known methodology [24]. Figure | shows the syntax of our core language. Terms
are standard except for the spore, import, and compose terms. A spore term creates a new
spore. It contains a list of variable definitions (the spore header), a list of property names,
and the spore’s closure. A property name refers to a type family (a set of types) that all
captured types must belong to.

An illustrative example of a property and its associated type family is a type class: a
spore satisfies such a property if there is a type class instance for all its captured types.

An import term imports a property name into the property environment within a lex-
ical scope (a term); the property environment contains properties that are registered as
requirements whenever a spore is created. This is explained in more detail in Section B.2.
A compose term is used to compose two spores. The core language provides spore compo-
sition as a built-in feature, because type checking spore composition is markedly different
from type checking regular function composition (see Section B.2).

The grammar of values is standard except for spore values; in a spore value each term
on the right-hand side of a definition in the spore header is a value.

The grammar of types is standard except for spore types. Spore types are refinements
of function types. They additionally contain a (possibly-empty) sequence of captured
types, which can be left abstract, and a sequence of property names.

13

14 H. Miller, P. Haller, and M. Odersky

3.1 Subtyping

Figure [shows the subtyping rules; rules S-Rec and S-Fun are standard [24].

The subtyping rule for spores (S-Sporg) is analogous to the subtyping rule for func-
tions with respect to the argument and result types. Additionally, for two spore types to
be in a subtyping relationship either their captured types have to be the same (M; = M>)
or the supertype must be an abstract spore type (Mo = type C). The subtype must guaran-
tee at least the properties of its supertype, or a superset thereof. Taken together, this rule
expresses the fact that a spore type whose type member C is not abstract is compatible
with an abstract spore type as long as it has a superset of the supertype’s properties. This
is important for spores used as first-class values: functions operating on spores with arbi-
trary environments can simply demand an abstract spore type. The way both the captured
types and the properties are modeled corresponds to (but simplifies) the subtyping rule
for refinement types in Scala (see Section 2.4).

Rule S-SporeFuN expresses the fact that spore types are refinements of their corre-
sponding function types, giving rise to a subtyping relationship.

S-REc S-Fun
rcl L=l-T<T AT <T Ty <:Ty Ry <: R
{L: Ty <:{V:T"} Th=Ri<:Tr = R
S-SPORE

Ty <: Ty Ri1 <: Rs ngTz My = Ms V My = type C
T1:>R1{M1;]Tn}<:T2:>R2{M2;pTL’}

S-SporeFuN
Tih=Ri{M;pn}<:Th= R

Fig. 6: Subtyping
3.2 Typing rules

Typing derivations use a judgement of the form I'; A F ¢ : T. Besides the standard
variable environment I" we use a property environment A which is a sequence of property
names that have been imported using import expressions in enclosing scopes of term ¢.
The property environment is reminiscent of the implicit parameter context used in the
original work on implicit parameters [[1(]; it is an environment for names whose definition
sites “just happen to be far removed from their usages.”

In the typing rules we assume the existence of a global property mapping P from
property names pn to type families 7. This technique is reminiscent of the way some
object-oriented core languages provide a global class table for type-checking. The main
difference is that our core language does not include constructs to extend the global prop-
erty map; such constructs are left out of the core language for simplicity, since the creation
of properties is not essential to our model. We require P to follow behavioral subtyping:

Definition 1. (Behavioral subtyping of property mapping) If T' <: T' and T' € P(pn),
then T € P(pn)

The typing rules are standard except for rules T-Imp, T-Sporg, and T-Comp, which
are new. Only these three type rules inspect or modify the property environment A. Note

Spores: A Type-Based Foundation for Closures in the Age of Concurrency & Distribution

T-Var T-Sus T-AsBs

z:Tel DARFE:T T'<:T Tz :Ti; ARt T
ARz T ARG T AR (z:Th)=>t: T =T1s
T-Aprp T-Ler

ARG - Th=Ty TARG T ARG T D :Ti; Aty Te

F;Al‘(tth)ZTQ F;AFletI:tlintg:TQ
T-Rec T-SEL T-Imp
AR T ;AR {l:T} ;A pnkt:T

DAR{l=t}:{l:T} TAREL T T;AF import pnint : T
T-SPorE

Vs; €. A F s;:5; y:S,x:Ti; Aty :Th Vpn € A,A'. S C P(pn)
[5AFspore{y:S=5;A(x:T1)=t2}: Ti=To{typeC=5; AA}

T-Comp . .
F;AFtllTlﬁTg{typeC:S; A1} F;Al—tQ:U1:>T1{typeC:R; AQ}
A ={pn € AyUA>| S C P(pn) AR C P(pn)}

I'; Aty composeto : Uy = To {typeC=S,R; A’}

Fig. 7: Typing rules

that there is no rule for spore application, since there is a subtyping relationship between
spores and functions (see Section B.1]). Using the subsumption rule T-Sus spore applica-
tion is expressed using the standard rule for function application (T-Arp).

Rule T-Imp imports a property pn into the property environment within the scope
defined by term ¢.

Rule T-SrorE derives a type for a spore term. In the spore, all terms on right-hand sides
of variable definitions in the spore header must be well-typed in the same environment
I'; A according to their declared type. The body of the spore’s closure, ¢o, must be well-
typed in an environment containing only the variables in the spore header and the closure’s
parameter, one of the central properties of spores. The last premise requires all captured
types to satisfy both the properties in the current property environment, A, as well as
the properties listes in the spore term, A’. Finally, the resulting spore type contains the
argument and result types of the spore’s closure, the sequence of captured types according
to the spore header, and the concatenation of properties A and A’. The intuition here is that
properties in the environment have been explicitly imported by the user, thus indicating
that all spores in the scope of the corresponding import should satisfy them.

Rule T-Comp derives a result type for the composition of two spores. It inspects the
captured types of both spores (S and R) to ensure that the properties of the resulting
spore, A, are satisfied by the captured variables of both spores. Otherwise, the argument
and result types are analogous to regular function composition. Note that it is possible to
weaken the properties of a spore through spore subtyping and subsumption (T-SuB).

15

16 H. Miller, P. Haller, and M. Odersky

E-AppSPORE .
Vpn € pn. T C P(pn)

spore {z: T =v;pm; (' : T) =t ' — [z v][2 = o't

E-SporE
te — t,
spore{z: T =v,x : Ty =tg, ' :T' =t';(x:T)=>1t} —
spore {z: T =v,ap: Tpy =tp, 0’ : T/ =t ;(x:T) =1t}
E-Comrl

E-Imp

_ t, — 1]
import pn in t — insert(pn,t)

t1 compose to — t/l compose t2
E-Comp2
ty — to

V1 compose t2 — V1 compose tIQ
E-Comp3 B .
A={plpepn,qn.T C P(p) NS C P(p)}
spore { x: T = v;pm; (' : T') = t } compose spore { y: S = w;qn; (v : $") =t} —
spore {z: T =v,y:S=w;A;(y : S') = letz =t in [z — 2]t}

Fig. 8: Operational Semanticst!

H-InsSpPorel
Vt; € t.insert(pn,t;) = t; insert(pn,t) = t'

insert(pn,spore {z: T = t;pm; (' : T) =t }) =
spore {x: T =t';pm,pn; (' : T) =t}

H-InsSporg2
insert(pn,t) = t'

insert(pn,spore {z: T = v;pm; (x' : T) =t }) =
spore {x: T = v;pn,pn; (z' : T) =t}
H-InsApp H-INsSEL
insert(pn,t1 t2) = insert(pn, t1) insert(pn, t2) insert(pn,t.l) = insert(pn,t).l

Fig. 9: Helper function insert

3.3 Operational semantics

Figure § shows the evaluation rules of a small-step operational semantics for our core
language. The only non-standard rules are E-AppSporE, E-Sprore, E-Imp, and E-Comp3.
Rule E-AppSporE applies a spore literal to an argument. The differences to regular func-
tion application (E-AppABs) are (a) that the types in the spore header must satisfy the
properties of the spore dynamically, and (b) that the variables in the spore header must be
replaced by their values in the body of the spore’s closure. Rule E-Spore is a congruence
rule. Rule E-Imp is a computation rule that is always enabled. It adds property name pn
to all spore terms within the body ¢. The insert helper function is defined in Figure J (we
omit rules for compose and let; they are analogous to rules H-INnsApp and H-INSSEL).

For the sake of brevity, here we omit the standard evaluation rules. The complete set of eval-
uation rules can be found in the accompanying technical report [[1§]

Spores: A Type-Based Foundation for Closures in the Age of Concurrency & Distribution

Rule E-CompP3 is the computation rule for spore composition. Besides computing the
composition in a way analogous to regular function composition, it defines the spore
header of the result spore, as well as its properties. The properties of the result spore are
restricted to those that are satisfied by the captured variables of both argument spores.

3.4 Soundness

This section presents a soundness proof of the spore type system. The proof'is based on a
pair of progress and preservation theorems [30]. A complete proof of soundness appears
in the companion technical report [|L8]. In addition to standard lemmas, we also prove a
lemma specific to our type system, Lemma [, which ensures types are preserved under
property import. Soundness of the type system follows from Theorem [I| and Theorem .

Theorem 1. (Progress) Suppose t is a closed, well-typed term (that is, =t : T for some
T). Then either t is a value or else there is some t' witht — t'.

Proof. By induction on a derivation of - ¢ : T". The only three interesting cases are the
ones for spore creation, application, and spore composition.

Lemma 1. (Preservation of types under import) If I'; A,pn = ¢t @ T then I'; A +
insert(pn,t): T

Proof. By induction on a derivation of I'; A,pn ¢t : T.

Lemma 2. (Preservation of types under substitution) If ',z : S;AF¢t:Tand ;A F
s: 8, thenT; Ak [z —s|t: T

Proof. By induction on a derivation of I,z : S; A ¢ : 7.

Lemma 3. (Weakening) [/ T; A+t : T and x ¢ dom(T), thenT,x : S; At :T.
Proof. By induction on a derivation of I'; A ¢ : T.

Theorem 2. (Preservation) f T; A+t :Tandt —t/, thenT; ARt : T.
Proof. By induction on a derivation of I'; A ¢ : 7.

3.5 Relation to spores in Scala

The type soundness proof (see Section B.4) guarantees several important properties for
well-typed programs which closely correspond to the pragmatic model in Scala:

1. Application of spores: for each property name pn, it is ensured that the dynamic types
of all captured variables are contained in the type family pn maps to (P(pn)).

2. Dynamically, a spore only accesses its parameter and the variables in its header.

3. The properties computed for a composition of two spores is a safe approximation of
the properties that are dynamically required.

17

18 H. Miller, P. Haller, and M. Odersky

tu= .. terms
|spore{z:T =¢t;T;pn;(x:T)=1¢} spore

v o= .. values
|spore{z:T =v;T;pn;(x:T) =1t} sporevalue

Su=T=T{typeC=T; typeE=T; pn} sporetype
| T =T {typeC; type E=T; pn } abstract spore type

Fig. 10: Core language syntax extensions

S-ESPoRE
o Ty <: Ty Ri <: Ry - .
pn/ Cpn My =MV Ma=typeC NT'€U.IT€U.T <:T

T1:>R1{M1;typeé‘=U;p7n} <:T2:>R2{M2;type5=ﬁ;pin’}

S-ESproreEFUN
T1:>R1{M; E';p*n}<:T1éR1

Fig. 11: Subtyping extensions

E-EApPPSPORE . . .
Vpn € pn. T C P(pn) VT, eT. T; ¢ U

spore {z: T=v;U;pn; (2 :T)=t}v — [z][z’ = V]t
E-EComp3 o
A={p|lpepn,qn.T C P(p) A 7P(p)} V=U\S)UU\T)
spore {z:T=wv;U;pn; (z':T") =t} compose

spore {y:S=w; U ;qn; (v .S):>t }—> spore{x:T:U,y:S:w;V;A;
(' :9) = let2 =t in[2' = 2t}

Fig. 12: Operational semantics extensions

3.6 Excluded types

This section shows how the formal model can be extended with excluded types as de-
scribed above (see Section R.4). Figure L] shows the syntax extensions: first, spore terms
and values are augmented with a sequence of excluded types; second, spore types and
abstract spore types get another member type £ = T specifying the excluded types.

Figure |L1] shows how the subtyping rules for spores have to be extended. Rule S-
ESporE requires that for each excluded type T” in the supertype, there must be an excluded
type T in the subtype such that 7" <: T'. This means that by excluding type 7', subtypes
like T are also prevented from being captured.

Figure [L2 shows the extensions to the operational semantics. Rule
E-EAprpSporE additionally requires that none of the captured types T are contained in the
excluded types U. Rule E-EComp3 computes the set of excluded types of the result spore
in the same way as in the corresponding type rule (T-ECowmp).

Figure |L3 shows the extensions to the typing rules. Rule T-ESpore additionally re-
quires that none of the captured types S is a subtype of one of the types contained in
the excluded types U. The excluded types are recorded in the type of the spore. Rule T-

Spores: A Type-Based Foundation for Closures in the Age of Concurrency & Distribution

T-ESporE
Vsi€§.£;A}—s,-:Si y:Sf,.T:Tl;Ail_tQITQ
Vpn € A,A’. S C P(pn) VS; € S.VU; € U. (S <: Uj)
DA Fspore {y:S=s5;U;A"(x:Th) = t2 }:
Ti=To{typeC=S5;typeE=U; A A"}

T-EComp . .
ARG T =T {typeC=S5; typeE=U; A1 }
F;AFtQ:glé’_ﬂ{typiC:E;typegiﬁ;iAgi} o

A'={pn € AyUA> | S C P(pn) AR C P(pn)} V=U\R)UU\S)

| AN b 21 composetg:U1:>T2{typeC=§,§; typeE=V; A/}

Fig. 13: Typing extensions

EComp computes a new set of excluded types V based on both the excluded types and
the captured types of ¢; and ¢5. Given that it is possible that one of the spores captures a
type that is excluded in the other spore, the type of the result spore excludes only those
types that are guaranteed not be captured.

4 Implementation

We have implemented spores as a macro library for Scala 2.10 and 2.11. Macros are an
experimental feature introduced in Scala 2.10 that enable “macro defs,” methods that
take expression trees as arguments and that return an expression tree that is inlined at
each invocation site. Macros are expanded during type checking in a way which enables
macros to synthesize their result type specialized for each expansion site.

The implementation for Scala 2.10 requires in addition a compiler plug-in that pro-
vides a backport of the support for Java 8 SAM types (“functional interfaces”) of Scala
2.11. SAM type support extends type inference for user-defined subclasses of Scala’s
standard function types which enables infering the types of spore parameters.

An expression spore { val y: S = s; (x: T) => /* body */ } invokes the spore
macro which is passed the block { val y... } as an expression tree. A spore without
type constraints simply checks that within the body of the spore’s closure, only the pa-
rameter x as well as the variables in the spore header are accessed according to the spore
type-checking rules. The expression tree returned by the macro creates an instance of a
refinement type of the abstract Spore class that implements its apply method (inherited
from the corresponding standard Scala function trait) by applying the spore’s closure.
The captured type member (see Section R.7) is defined by the generated refinement type
to be a tuple type with the types of all captured variables. If there are no type constraints
the Excluded type member is defined to be No[Nothing].

Type constraints are implemented as follows. First, invoking the generic without
macro passing a type argument T, say, augments the generated Spore refinement type
by effectivly adding the clause with No[T] to the definition of its Excluded type member.
Second, the existence of additional bounds on the captured types is detected by attempting
to infer an implicit value of type Property[_]. If such an implicit value can be inferred, a
sequence of types specifying type bounds is obtained as follows. The type of the implicit

19

20 H. Miller, P. Haller, and M. Odersky

Program LOC #closures #converted LOC changed #captured vars

funsets 9 8 8 7 9 } MOOC

forcomp 201 6 4 4 0

mandelbrot 325 1 1 9 6 .
barneshut 72 7 . 3] } Parallel Collections
spark pagerank 64 5 5 8 0 K

spark kmeans 92 5 4 9 2 Spar

Total 1503 32 29 45 18

Fig. 14: Evaluating the practicality of using spores in place of normal closures

value is matched against the pattern Property[t1] with ... with Property[tn]. For each
type ti an implicit member of the following shape is added to the Spore type refinement:

implicit val evi: ti[Captured] = implicitly[ti[Captured]]

The implicit conversion (Section R.3) from standard Scala functions to spores is imple-
mented as a macro whose expansion fails if the argument function is not a literal, since
in this case it is impossible for the macro to check the spore shape/capturing constraints.

5 Evaluation

In this section we evaluate the practicality and the benefits of using spores as an alternative
to normal closures in Scala. The evaluation has two parts. In the first part we measure the
impact of introducing spores in existing programs. In the second part we evaluate the
utility and the syntactic overhead of spores in a large code base of applications based on
the Apache Spark framework for big data analytics.

5.1 Using Spores Instead of Closures

In this section we measure the number of changes required to convert existing programs
that crucially rely on closures to use spores. We analyze a number of real Scala programs,
taken from three categories:

1. General, closure-heavy code, taken from the exercises of the popular MOOC on
Functional Programming Principles in Scala; the goal of analyzing this code is to get
an approximation of the worst-case effort required when consistently using spores
instead of closures, in a mostly-functional code base.

2. Parallel applications based on Scala’s parallel collections. These examples evaluate
the practicality of using spores in a parallel code base to increase its robustness.

3. Distributed applications based on the Apache Spark cluster computing framework. In
this case, we evaluate the practicality of using spores in Spark applications to make
sure closures are guaranteed to be serializable.

Methodology For each program, we obtained (a) the number of closures in the program
that are candidates for conversion, (b) the number of closures that could be converted to
spores, (c) the changed/added number of LOC, and (d) the number of captured variables.
It is important to note that during the conversion it was not possible to rely on an implicit
conversion of functions to spores, since the expected types of all library methods that
were invoked by the evaluated applications remained normal function types. Thus, the
reported numbers are worse than they would be for APIs using spores.

Spores: A Type-Based Foundation for Closures in the Age of Concurrency & Distribution

average LOC average # of % closures that

Project per closure captured vars don’t capture
sameeragarwal/blinkdb 0
*268 A33 L0C22,022 1.39 ! 93.5%

treeman-lab/thundenr a
*89 2 Loc2.813 103 1.30 23.3%
bigdatagenomics/adam 1.90 | 44 30.2%
*x86 A16 Loc 19,055 ’ ’ e
ooyala/spark-jobserven 0
*79 M6 LOC5,578 1.60 ! 80.0%
Sotera/correlation-approximation
4.55 1.25 63.6%
*12 M2 Loc775 °
aecc/stream-tree-learning 0
*1 2 Loc1,199 373 2 54.5%
lagerspetz/TimeSeriesSpark)85 177 75.0%
*5 2] Loc 14,882 ' ' e
Total LoC 66,324 2.25 1.39 67.2%

Fig. 15: Evaluating the impact and overhead of spores on real distributed applications.
Each project listed is an active and noteworthy open-source project hosted on GitHub that
is based on Apache Spark. % represents the number of “stars™ (or interest) a repository
has on GitHub, and &% represents the number of contributors to the project.

Results The results are shown in Figure [14. Out of 32 closures 29 could be converted
to spores with little effort. One closure failed to infer its parameter type when expressed
as a spore. Two other closures could not be converted due to implementation restrictions
of our prototype. On average, per converted closure 1.4 LOC had to be changed. This
number is dominated by two factors: the inability to use the implicit conversion from
functions to spores, and one particularly complex closure in “mandelbrot” that required
changing 9 LOC. In our programs, the number of captured variables is on average 0.56.
These results suggest that programs using closures in non-trivial ways can typically be
converted to using spores with little effort, even if the used APIs do not use spore types.

5.2 Spores and Apache Spark

To evaluate both benefit and overhead of using spores in larger, distributed applications,
we studied the codebases of 7 noteworthy open-source applications using Apache Spark.

Methodology We evaluated the applications along two dimensions. In the first dimension
we were interested how widespread patterns are that spores could statically enforce. In
the context of open-source applications built on top of the Spark framework, we counted
the number of closures passed to the higher-order map method of the RDD type (Spark’s dis-
tributed collection abstraction); all of these closures must be serializable to avoid runtime
exceptions. (The RDD type has several more higher-order functions that require serializable
closures such as flatMap; map is the most commonly used higher-order function, though,
and is thus representative of the use of closures in Spark.) In the second dimension, we an-
alyzed the percentage of spores that could be converted automatically to spores assuming
the Spark API would use spore types instead of regular function types, thus not incurring

21

https://github.com/sameeragarwal/blinkdb
https://github.com/freeman-lab/thunder
https://github.com/bigdatagenomics/adam
https://github.com/ooyala/spark-jobserver
https://github.com/Sotera/correlation-approximation
https://github.com/aecc/stream-tree-learning
https://github.com/lagerspetz/TimeSeriesSpark

22 H. Miller, P. Haller, and M. Odersky

any syntactic overhead. In cases where automatic conversion would be impossible, we
analyzed the average number of captured variables, indicating the syntactic overhead of
using explicit spores.

Results Figure ||§ summarizes our results. Of all closures passed to RDD’s map method,
about 67.2% do not capture any variable; these closures could be automatically converted
to spores using the implicit macro of Section R.3. The remaining 32.8% of closures that
do capture variables, capture on average 1.39 variables. This indicates that unchecked
patterns for serializable closures are widespread in real applications, and that benefiting
from static guarantees provided by spores would require only little syntactic overhead.

5.3 Spores and Akka

We have also verified that excluding specific types from closures is important.

The Akka event-driven middleware provides an actor abstraction for concurrency.
When using futures together with actors, it is common to provide the result of a future-
based computation to the sender of a message sent to an actor.

However, naive implementations of patterns such as this can problematic. To access
the sender of a message, Akka’s Actor trait provides a method sender that returns a ref-
erence to the actor that is the sender of the message currently being processed. There is a
potential for a data race where the actor starts processing a message from a different actor
than the original sender, but a concurrent future-based computation invokes the sender
method (on this), thus obtaining a reference to the wrong actor.

Given the importance of combining actors and futures, Akka provides a library
method pipeTo to enable programming patterns using futures that avoid capturing vari-
ables of type Actor in closures. However, the correct use of pipeTo is unchecked. Spores
provide a new statically-checked approach to address this problem by demanding closures
passed to future constructors to be spores with the constraint that type Actor is excluded.

Methodology To find out how often spores with type constraints could turn an unchecked
pattern into a statically-checked guarantee, we analyzed 7 open-source projects using
Akka (GitHub projects with 23 stars on average; more than 100 commits; 2.7 contributors
on average). For each project we searched for occurrences of “pipeTo” directly following
closures passed to future constructors.

Results The 7 projects contain 19 occurrences of the presented unchecked pattern to avoid
capturing Actor instances within closures used concurrently. Spores with a constraint to
exclude Actor statically enforce the safety of all those closures.

6 Case Study

Frameworks like MapReduce [4] and Apache Spark [31]] are designed for processing large
datasets in a cluster, using well-known map/reduce computation patterns.

In Spark, these patterns are expressed using higher-order functions, like map, applied
to the “resilient distributed dataset” (RDD) abstraction. However, to avoid unexpected
runtime exceptions due to unserializable closures when passing closures to RDDs, pro-
grammers must adopt conventions that are subtle and unchecked by the Scala compiler.

The following typical pattern was extracted from a code base used in production:

1 class GenericOp(sc: SparkContext, mapping: Map[String, String]) {
2 private var cachedSessions: spark.RDD[Session] = ...

3

Spores: A Type-Based Foundation for Closures in the Age of Concurrency & Distribution

4 def doOp(keyList: List[...], ...): Result = {

5 val localMapping = mapping

6

7 val mapFun: Session => (List[String], GenericOpAggregator) = { s =>
8 (keyList, new GenericOpAggregator(s, localMapping))

9 }

10

11 val reduceFun: (GenericOpAggregator, GenericOpAggregator) =>
12 GenericOpAggregator = { (a, b) => a.merge(b) }

13

14 cachedSessions.map(mapFun).reduceByKey(reduceFun).collectAsMap
15 }

16 }

The doop method performs operations on the RDD cachedSessions. GenericOp has a pa-
rameter of type SparkContext, the main entry point for functionality provided by Spark,
and a parameter of type Map[String, String]. The main computation is a chain of invo-
cations of map, reduceByKey, and collectAsMap. To ensure that the argument closures of
map and reduceByKey are serializable, the code follows two conventions: first, instead of
defining mapFun and reduceFun as methods, they are defined using lambdas stored in local
variables. Second, instead of using the mapping parameter directly, it is first copied into a
local variable localMapping. The reason for the first convention is that in Scala converting
a method to a function implicitly captures a reference to the enclosing object. However,
GenericOp is not serializable, since it refers to a SparkContext. The reason for the second
convention is that using mapping directly would result in mapFun capturing this.

Applying Spores The above conventions can be enforced by the compiler, avoiding
unexpected runtime exceptions, by turning mapFun and reduceFun into spores:

1 val mapFun: Spore[Session, (List[String], GenericOpAggregator)] =

2 spore { val localMapping = mapping

3 (s: Session) => (keylList, new GenericOpAggregator(s, localMapping)) }

4 val reduceFun: Spore[(GenericOpAggregator, GenericOpAggregator),

5 GenericOpAggregator] =

6 spore { (a, b) => a.merge(b) }

The spore shape enforces the use of localMapping (moved into mapFun). Furthermore, there

is no more possibility of accidentally capturing a reference to the enclosing object.

7 Other Related Work

Parallel closures [[14] are a variation of closures that make data in the environment avail-
able using read-only references using a type system for reference immutability. This en-
ables parallel execution without the possibility of data races. Spores are not limited to
immutable environments, and do not require a type system extension. River Trail [§] pro-
vides a concurrency model for JavaScript, similar to parallel closures; however, capturing
variables in closures is currently not supported.

MLS5 [22] provides mobile closures verified not to use resources not present on ma-
chines where they are applied. This property is enforced transitively (for all values reach-
able from captured values), which is stronger than what plain spores provide. However,
type constraints allow spores to require properties not limited to mobility. Transitive prop-
erties are supported either using type constraints based on type classes which enforce a
transitive property or by integrating with type systems that enforce transitive properties.
Unlike ML5, spores do not require a type system extension.

A well-known type-based representation of closures uses existential types where
the existentially quantified variable represents the closure’s environment, enabling type-

23

24 H. Miller, P. Haller, and M. Odersky

preserving compilation of functional languages [21]]. A spore type may have an abstract
Captured type, effectively encoding an existantial quantification; however, captured types
are typically concrete, and the spore type system supports constraints on them.

HdpH []11] generalizes Cloud Haskell’s closures in several aspects: first, closures can
be transformed without eliminating them. Second, unnecessary serialization is avoided,
e.g., when applying a closure immediately after creation. Otherwise, the discussion of
Cloud Haskell in Section [1. If also applies to HdpH. Delimited continuations [27] represent
a way to serialize behavior in Scala, but don’t resolve any of the problems of normal Scala
closures when it comes to accidental capture, as spores do.

Termite Scheme [(] is a Scheme dialect for distributed programming where closures
and continuations are always serializable; references to non-serializable objects (like open
files) are automatically wrapped in processes that are serialized as their process ID. In
contrast, with spores there is no such automatic wrapping. Unlike closures in Termite
Scheme, spores are statically-typed, supporting type-based constraints. Serializable clo-
sures in a dynamically-typed setting are also the basis for [28]. Python’s standard serial-
ization module, pickle, does not support serializing closures. Dill [[15] extends Python’s
pickle module, adding support for functions and closures, but without constraints.

8 Conclusion

We’ve presented a type-based foundation for closures, called spores, designed to avoid
various hazards that arise particularly in concurrent or distributed settings. We have pre-
sented a flexible type system for spores which enables composability of differently-
constrained spores as well as custom user-defined type constraints. We formalize and
present a full soundness proof, as well as an implementation of our approach in Scala.

A key takeaway of our approach is that including type information of captured vari-
ables in the type of the spore enables a number of previously impossible opportunities,
including but not limited to controlled capture in concurrent, distributed, and other arbi-
trary scenarios where closures must be controlled.

Finally, we demonstrate the practicality of our approach through an empirical study,
and show that converting non-trivial programs to use spores requires relatively little effort.

Acknowledgements

We would like to thank the anonymous ECOOP 2014 referees for their thorough reviews
and helpful suggestions which greatly improved the quality of the paper. Heather Miller
was supported by a US National Science Foundation Graduate Research Fellowship.

References

1. Z. Budimli¢, M. Burke, V. Cavé¢, K. Knobe, G. Lowney, R. Newton, J. Palsberg, D. Peixotto,
V. Sarkar, F. Schlimbach, et al. Concurrent collections. Scientific Programming, 18(3), 2010.

2. M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and S. Marlow. Data
Parallel Haskell: A status report. In Proc. DAMP Workshop, pages 10-18. ACM, 2007.

3. A. Collins, D. Grewe, V. Grover, S. Lee, and A. Susnea. NOVA: A functional language for
data parallelism. Technical Report NVR-2013-002, NVIDIA Corporation, July 2013.

4. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Commun.
ACM, 51(1):107-113, Jan. 2008.

5. J. Epstein, A. P. Black, and S. Peyton-Jones. Towards Haskell in the cloud. In Proc. Haskell
Symposium, pages 118-129. ACM, 2011.

10.

I1.

12.

13.

14.
15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

Spores: A Type-Based Foundation for Closures in the Age of Concurrency & Distribution

. G. Germain. Concurrency oriented programming in Termite Scheme. In Erlang Workshop,
page 20. ACM, 2006.

. B. Goetz. JSR 335: Lambda expressions for the Java programming language. https://jcp.
org/en/jsr/detail?id=335, 2013.

. S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram. River trail: a path to parallelism in
JavaScript. In OOPSLA, pages 729-744, 2013.

. International Standard ISO/IEC 14882:2011. Programming Languages — C++. International

Organization for Standards, 2011.

J. R. Lewis, J. Launchbury, E. Meijer, and M. Shields. Implicit parameters: Dynamic scoping

with static types. In POPL, pages 108—118, 2000.

P. Maier and P. W. Trinder. Implementing a high-level distributed-memory parallel Haskell in

Haskell. In /FL, volume 7257, pages 35-50. Springer, 2011.

S. Marlow, R. Newton, and S. Peyton Jones. A monad for deterministic parallelism. In Proc.

Haskell Symposium, pages 71-82. ACM, 2011.

N. Matsakis. Fn types in Rust, take 3. http://smallcultfollowing.com/babysteps/blog/2013/

10/10/fn-types-in-rust, 2013.

N. D. Matsakis. Parallel closures: a new twist on an old idea. In HotPar. USENIX, 2012.

M. M. McKerns, L. Strand, T. Sullivan, A. Fang, and M. A. Aivazis. Building a framework

for predictive science. In Proc. of the 10th Python in Science Conf., 2011.

E. Meijer. Confessions of a used programming language salesman. In OOPSLA, 2007.

L. A. Meyerovich and A. S. Rabkin. Empirical analysis of programming language adoption.

In OOPSLA, 2013.

H. Miller and P. Haller. Spores, formally. Technical Report EPFL-REPORT-191240, Depart-

ment of Computer Science, EPFL, Lausanne, Switzerland, December 2013.

H. Miller, P. Haller, E. Burmako, and M. Odersky. Instant pickles: Generating object-oriented

pickler combinators for fast and extensible serialization. In OOPSLA, pages 183-202, 2013.

H. Miller, P. Haller, L. Rytz, and M. Odersky. Functional programming for all! Scaling a

MOOC for students and professionals alike. In /CSE, pages 265-263, 2014.

J. G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly language.

ACM Trans. Program. Lang. Syst, 21(3):527-568, 1999.

T. Murphy VIL, K. Crary, and R. Harper. Type-safe distributed programming with MLS5. In

TGC, volume 4912, pages 108—123. Springer, 2007.

M. Odersky. The Scala language specification, 2013.

B. C. Pierce. Types and programming languages. MIT Press, 2002.

A. Prokopec, P. Bagwell, T. Rompf, and M. Odersky. A generic parallel collection framework.

In Euro-Par, volume 6853, pages 136—147. Springer, 2011.

A. Prokopec, H. Miller, T. Schlatter, P. Haller, and M. Odersky. Flowpools: A lock-free de-

terministic concurrent dataflow abstraction. In LCPC, pages 158—173. Springer, 2012.

T. Rompf, I. Maier, and M. Odersky. Implementing first-class polymorphic delimited contin-

uations by a type-directed selective CPS-transform. In ICFP, pages 317-328. ACM, 20009.

A. Schwendner. Distributed functional programming in Scheme. Master’s thesis, Mas-

sachusetts Institute of Technology, 2009.

Typesafe. Akka. http://akka.io/, 2009.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput,

115(1):38-94, Nov. 1994.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, M. McCauley, M. Franklin, S. Shenker, and

I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In NSDI. USENIX, 2012.

Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst. Ownership and immutability in generic

java. In OOPSLA, pages 598-617. ACM, 2010.

25

https://jcp.org/en/jsr/detail?id=335
https://jcp.org/en/jsr/detail?id=335
http://smallcultfollowing.com/babysteps/blog/2013/10/10/fn-types-in-rust
http://smallcultfollowing.com/babysteps/blog/2013/10/10/fn-types-in-rust
http://akka.io/

	Spores: A Type-Based Foundation for Closures in the Age of Concurrency and Distribution

