152 research outputs found

    Time frequency analysis in terahertz pulsed imaging

    Get PDF
    Recent advances in laser and electro-optical technologies have made the previously under-utilized terahertz frequency band of the electromagnetic spectrum accessible for practical imaging. Applications are emerging, notably in the biomedical domain. In this chapter the technique of terahertz pulsed imaging is introduced in some detail. The need for special computer vision methods, which arises from the use of pulses of radiation and the acquisition of a time series at each pixel, is described. The nature of the data is a challenge since we are interested not only in the frequency composition of the pulses, but also how these differ for different parts of the pulse. Conventional and short-time Fourier transforms and wavelets were used in preliminary experiments on the analysis of terahertz pulsed imaging data. Measurements of refractive index and absorption coefficient were compared, wavelet compression assessed and image classification by multidimensional clustering techniques demonstrated. It is shown that the timefrequency methods perform as well as conventional analysis for determining material properties. Wavelet compression gave results that were robust through compressions that used only 20% of the wavelet coefficients. It is concluded that the time-frequency methods hold great promise for optimizing the extraction of the spectroscopic information contained in each terahertz pulse, for the analysis of more complex signals comprising multiple pulses or from recently introduced acquisition techniques

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Exploring cosmic origins with CORE: Gravitational lensing of the CMB

    Get PDF
    Lensing of the CMB is now a well-developed probe of large-scale clustering over a broad range of redshifts. By exploiting the non-Gaussian imprints of lensing in the polarization of the CMB, the CORE mission can produce a clean map of the lensing deflections over nearly the full-sky. The number of high-S/N modes in this map will exceed current CMB lensing maps by a factor of 40, and the measurement will be sample-variance limited on all scales where linear theory is valid. Here, we summarise this mission product and discuss the science that it will enable. For example, the summed mass of neutrinos will be determined to an accuracy of 17 meV combining CORE lensing and CMB two-point information with contemporaneous BAO measurements, three times smaller than the minimum total mass allowed by neutrino oscillations. In the search for B-mode polarization from primordial gravitational waves with CORE, lens-induced B-modes will dominate over instrument noise, limiting constraints on the gravitational wave power spectrum amplitude. With lensing reconstructed by CORE, one can "delens" the observed polarization internally, reducing the lensing B-mode power by 60%. This improves to 70% by combining lensing and CIB measurements from CORE, reducing the error on the gravitational wave amplitude by 2.5 compared to no delensing (in the null hypothesis). Lensing measurements from CORE will allow calibration of the halo masses of the 40000 galaxy clusters that it will find, with constraints dominated by the clean polarization-based estimators. CORE can accurately remove Galactic emission from CMB maps with its 19 frequency channels. We present initial findings that show that residual Galactic foreground contamination will not be a significant source of bias for lensing power spectrum measurements with CORE. [abridged

    Planck 2018 results. IV. Diffuse component separation

    Get PDF
    We present full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previous versions. The methodologies used to derive these maps follow closely those described in earlier papers, adopting four methods (Commander, NILC, SEVEM, and SMICA) to extract the CMB component, as well as three methods (Commander, GNILC, and SMICA) to extract astrophysical components. Our revised CMB temperature maps agree with corresponding products in the Planck 2015 delivery, whereas the polarization maps exhibit significantly lower large-scale power, reflecting the improved data processing described in companion papers; however, the noise properties of the resulting data products are complicated, and the best available end-to-end simulations exhibit relative biases with respect to the data at the few percent level. Using these maps, we are for the first time able to fit the spectral index of thermal dust independently over 3 degree regions. We derive a conservative estimate of the mean spectral index of polarized thermal dust emission of beta_d = 1.55 +/- 0.05, where the uncertainty marginalizes both over all known systematic uncertainties and different estimation techniques. For polarized synchrotron emission, we find a mean spectral index of beta_s = -3.1 +/- 0.1, consistent with previously reported measurements. We note that the current data processing does not allow for construction of unbiased single-bolometer maps, and this limits our ability to extract CO emission and correlated components. The foreground results for intensity derived in this paper therefore do not supersede corresponding Planck 2015 products. For polarization the new results supersede the corresponding 2015 products in all respects

    Planck 2018 results. III. High Frequency Instrument data processing and frequency maps

    Get PDF
    This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous 2015 release. They enabled the first significant measurement of the reionization optical depth parameter using HFI data. This paper presents an extensive analysis of systematic effects, including the use of simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved. Calibration, based on the CMB dipole, is now extremely accurate and in the frequency range 100 to 353 GHz reduces intensity-to-polarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than 0.35μ0.35\muK, an accuracy of order 10410^{-4}. This is a major legacy from the HFI for future CMB experiments. The removal of bandpass leakage has been improved by extracting the bandpass-mismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of "frequency maps", which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. Simulations reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect. Using these simulations, we measure and correct the small frequency calibration bias induced by this systematic effect at the 10410^{-4} level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the 10310^{-3} level

    Planck 2018 results. XII. Galactic astrophysics using polarized dust emission

    Get PDF
    We present 353 GHz full-sky maps of the polarization fraction p, angle \u3c8, and dispersion of angles S of Galactic dust thermal emission produced from the 2018 release of Planck data. We confirm that the mean and maximum of p decrease with increasing NH. The uncertainty on the maximum polarization fraction, pmax=22.0% at 80 arcmin resolution, is dominated by the uncertainty on the zero level in total intensity. The observed inverse behaviour between p and S is interpreted with models of the polarized sky that include effects from only the topology of the turbulent Galactic magnetic field. Thus, the statistical properties of p, \u3c8, and S mostly reflect the structure of the magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map S 7p, looking for residual trends. While p decreases by a factor of 3--4 between NH=1020 cm 122 and NH=2 71022 cm 122, S 7p decreases by only about 25%, a systematic trend observed in both the diffuse ISM and molecular clouds. Second, we find no systematic trend of S 7p with the dust temperature, even though in the diffuse ISM lines of sight with high p and low S tend to have colder dust. We also compare Planck data with starlight polarization in the visible at high latitudes. The agreement in polarization angles is remarkable. Two polarization emission-to-extinction ratios that characterize dust optical properties depend only weakly on NH and converge towards the values previously determined for translucent lines of sight. We determine an upper limit for the polarization fraction in extinction of 13%, compatible with the pmax observed in emission. These results provide strong constraints for models of Galactic dust in diffuse gas

    Planck 2018 results. XII. Galactic astrophysics using polarized dust emission

    Get PDF
    We present 353 GHz full-sky maps of the polarization fraction pp, angle ψ\psi, and dispersion of angles SS of Galactic dust thermal emission produced from the 2018 release of Planck data. We confirm that the mean and maximum of pp decrease with increasing NHN_H. The uncertainty on the maximum polarization fraction, pmax=22.0p_\mathrm{max}=22.0% at 80 arcmin resolution, is dominated by the uncertainty on the zero level in total intensity. The observed inverse behaviour between pp and SS is interpreted with models of the polarized sky that include effects from only the topology of the turbulent Galactic magnetic field. Thus, the statistical properties of pp, ψ\psi, and SS mostly reflect the structure of the magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map S×pS \times p, looking for residual trends. While pp decreases by a factor of 3--4 between NH=1020N_H=10^{20} cm2^{-2} and NH=2×1022N_H=2\times 10^{22} cm2^{-2}, S×pS \times p decreases by only about 25%, a systematic trend observed in both the diffuse ISM and molecular clouds. Second, we find no systematic trend of S×pS \times p with the dust temperature, even though in the diffuse ISM lines of sight with high pp and low SS tend to have colder dust. We also compare Planck data with starlight polarization in the visible at high latitudes. The agreement in polarization angles is remarkable. Two polarization emission-to-extinction ratios that characterize dust optical properties depend only weakly on NHN_H and converge towards the values previously determined for translucent lines of sight. We determine an upper limit for the polarization fraction in extinction of 13%, compatible with the pmaxp_\mathrm{max} observed in emission. These results provide strong constraints for models of Galactic dust in diffuse gas

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Exploring Cosmic Origins with CORE: Cluster Science

    Get PDF
    We examine the cosmological constraints that can be achieved with a galaxy cluster survey with the future CORE space mission. Using realistic simulations of the millimeter sky, produced with the latest version of the Planck Sky Model, we characterize the CORE cluster catalogues as a function of the main mission performance parameters. We pay particular attention to telescope size, key to improved angular resolution, and discuss the comparison and the complementarity of CORE with ambitious future ground-based CMB experiments that could be deployed in the next decade. A possible CORE mission concept with a 150 cm diameter primary mirror can detect of the order of 50,000 clusters through the thermal Sunyaev-Zeldovich effect (SZE). The total yield increases (decreases) by 25% when increasing (decreasing) the mirror diameter by 30 cm. The 150 cm telescope configuration will detect the most massive clusters (> 1014 M) at redshift z > 1.5 over the whole sky, although the exact number above this redshift is tied to the uncertain evolution of the cluster SZE flux-mass relation; assuming self-similar evolution, CORE will detect ∼ 500 clusters at redshift z > 1.5. This changes to 800 (200) when increasing (decreasing) the mirror size by 30 cm. CORE will be able to measure individual cluster halo masses through lensing of the cosmic microwave background anisotropies with a 1-σ sensitivity of 4 × 1014M, for a 120 cm aperture telescope, and 1014M for a 180 cm one. From the ground, we estimate that, for example, a survey with about 150,000 detectors at the focus of 350 cm telescopes observing 65% of the sky from Atacama would be shallower than CORE and detect about 11,000 clusters, while a survey from the South Pole with the same number of detectors observing 25% of sky with a 10 m telescope is expected to be deeper and to detect about 70,000 clusters. When combined with such a South Pole survey, CORE would reach a limiting mass of M500 ∼ 2 − 3 × 1013Mand detect 220,000 clusters (5 sigma detection limit). Cosmological constraints from CORE cluster counts alone are competitive with other scheduled large scale structure surveys in the 2020’s for measuring the dark energy equation-of-state parameters w0 and wa (σw0 = 0.28, σwa = 0.31). In combination with primary CMB constraints, CORE cluster counts can further reduce these error bars on w0 and wa to 0.05 and 0.13 respectively, and constrain the sum of the neutrino masses, Σmν, to 39 meV (1 sigma). The wide frequency coverage of CORE, 60 - 600 GHz, will enable measurement of the relativistic thermal SZE by stacking clusters. Contamination by dust emission from the clusters, however, makes constraining the temperature of the intracluster medium difficult. The kinetic SZE pairwise momentum will be extracted with S/N = 70 in the foreground-cleaned CMB map. Measurements of TCMB(z) using CORE clusters will establish competitive constraints on the evolution of the CMB temperature: (1+z) 1−β , with an uncertainty of σβ . 2.7×10−3 at low redshift (z . 1). The wide frequency coverage also enables clean extraction of a map of the diffuse SZE signal over the sky, substantially reducing contamination by foregrounds compared to the Planck SZE map extraction. Our analysis of the one-dimensional distribution of Compton-y values in the simulated map finds an order of magnitude improvement in constraints on σ8 over the Planck result, demonstrating the potential of this cosmological probe with CORE
    corecore