238 research outputs found

    Thermal compression of two-dimensional atomic hydrogen to quantum degeneracy

    Full text link
    We describe experiments where 2D atomic hydrogen gas is compressed thermally at a small "cold spot" on the surface of superfluid helium and detected directly with electron-spin resonance. We reach surface densities up to 5e12 1/cm^2 at temperatures of approximately 100 mK corresponding to the maximum 2D phase-space density of about 1.5. By independent measurements of the surface density and its decay rate we make the first direct determination of the three-body recombination rate constant and get the value of 2e-25 cm^4/s for its upper bound, which is an order of magnitude smaller than previously reported experimental results.Comment: 4 pages, 4 postscript figures, bibliography (.bbl) file, submitted to PR

    Thermal compression of atomic hydrogen on helium surface

    Full text link
    We describe experiments with spin-polarized atomic hydrogen gas adsorbed on liquid 4^{4}He surface. The surface gas density is increased locally by thermal compression up to 5.5×10125.5\times10^{12} cm2^{-2} at 110 mK. This corresponds to the onset of quantum degeneracy with the thermal de-Broglie wavelength being 1.5 times larger than the mean interatomic spacing. The atoms were detected directly with a 129 GHz electron-spin resonance spectrometer probing both the surface and the bulk gas. This, and the simultaneous measurement of the recombination power, allowed us to make accurate studies of the adsorption isotherm and the heat removal from the adsorbed hydrogen gas. From the data, we estimate the thermal contact between 2D hydrogen gas and phonons of the helium film. We analyze the limitations of the thermal compression method and the possibility to reach the superfluid transition in 2D hydrogen gas.Comment: 20 pages, 11 figure

    Chandra Smells a RRAT: X-ray Detection of a Rotating Radio Transient

    Get PDF
    "Rotating RAdio Transients" (RRATs) are a newly discovered astronomical phenomenon, characterised by occasional brief radio bursts, with average intervals between bursts ranging from minutes to hours. The burst spacings allow identification of periodicities, which fall in the range 0.4 to 7 seconds. The RRATs thus seem to be rotating neutron stars, albeit with properties very different from the rest of the population. We here present the serendipitous detection with the Chandra X-ray Observatory of a bright point-like X-ray source coincident with one of the RRATs. We discuss the temporal and spectral properties of this X-ray emission, consider counterparts in other wavebands, and interpret these results in the context of possible explanations for the RRAT population.Comment: 5 pages, 2 b/w figures, 1 color figure. To appear in the proceedings of "Isolated Neutron Stars", Astrophysics & Space Science, in pres

    The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant

    Full text link
    We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the resultant data cube, we have been able to reconstruct the full 3D structure of the system of [O III] filaments. The majority of the ejecta form a ring of ~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We conclude that SNR N132D is approaching the end of the reverse shock phase before entering the fully thermalized Sedov phase of evolution. We speculate that the ring of oxygen-rich material comes from ejecta in the equatorial plane of a bipolar explosion, and that the overall shape of the SNR is strongly influenced by the pre-supernova mass loss from the progenitor star. We find tantalizing evidence of a polar jet associated with a very fast oxygen-rich knot, and clear evidence that the central star has interacted with one or more dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8 figure

    Magnetic Field Generation in Stars

    Get PDF
    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field generation in stars to appear in Space Science Reviews, Springe

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    The prospectivity of a potential shale gas play: An example from the southern Pennine Basin (central England, UK)

    Get PDF
    During the Serpukhovian (late Mississippian) Stage, the Pennine Basin, now underlying much of northern England, consisted of a series of interlinked sub-basins that developed in response to the crustal extension north of the Hercynic orogenic zone. For the current study, mudstone samples of the Morridge Formation from two sub-basins located in the south-eastern part of the Pennine Basin were collected from the Carsington Dam Reconstruction C3 Borehole (Widmerpool Gulf sub-basin) and the Karenight 1 Borehole (Edale Gulf sub-basin). Detailed palynological analyses indicate that aside from the dominant (often 90% or more) heterogeneous amorphous organic matter (AOM), variable abundances of homogeneous AOM and phytoclasts are present. To complement the palynological dataset, a suite of geochemical and mineralogical techniques were applied to evaluate the prospectivity of these potentially important source rocks. Changes in the carbon isotope composition of the bulk organic fraction (δ13COM) suggest that the lower part (Biozone E2a) of Carsington DR C3 is markedly more influenced by terrigenous kerogen than the upper part of the core (Biozones E2a3–E2b1). The Karenight 1 core yielded more marine kerogen in the lower part (Marine Bands E1–E2b) than the upper part (Marine Band E2b). Present day Rock-Eval™ Total Organic Carbon (TOC) surpasses 2% in most samples from both cores, a proportion suggested by Jarvie (2012) that defines prospective shale gas reservoirs. However, when the pyrolysable component that reflects the generative kerogen fraction is considered, very few samples reach this threshold. The kerogen typing permits for the first time the calculation of an original hydrogen index (HIo) and original total organic carbon (TOCo) for Carboniferous mudstones of the Pennine Basin. The most prospective part of Carsington DR C3 (marine bands E2b1–E2a3) has an average TOCo of 3.2% and an average HIo of 465 mg/g TOCo. The most prospective part of Karenight 1 (242.80–251.89 m) is characterized by an average TOCo of 9.3% and an average HIo of 504 mg/g TOCo. Lastly, X-ray diffraction (XRD) analysis confirms that the siliceous to argillaceous mudstones contain a highly variable carbonate content. The palynological, geochemical and mineralogical proxies combined indicate that marine sediments were continuously being deposited throughout the sampled intervals and were punctuated by episodic turbiditic events. The terrestrial material, originating from the Wales-Brabant High to the south of the Pennine Basin, was principally deposited in the Widmerpool Gulf, with much less terrigenous organic matter reaching the Edale Gulf. As a consequence, the prospective intervals are relatively thin, decimetre-to meter-scale, and further high resolution characterization of these intervals is required to understand variability in prospectivitiy over these limited intervals

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
    corecore