135 research outputs found

    Comparison of 2 diets with either 25% or 10% of energy as casein on energy expenditure, substrate balance, and appetite profile.

    Get PDF
    BACKGROUND: An increase in the protein content of a diet results in an increase in satiety and energy expenditure. It is not clear to what extent a specific type of protein has such effects. OBJECTIVE: The objective was to compare the effects of 2 diets with either 25% or 10% of energy from casein (25En% and 10En% casein diets), as the only protein source, on energy expenditure, substrate balance, and appetite profile. DESIGN: During a 36-h stay in a respiration chamber, 24 healthy subjects [12 men and 12 women, body mass index (in kg/m(2)) of 22.4 +/- 2.4, age 25 +/- 7 y] received isoenergetic diets according to subject-specific energy requirements: 25En% diet (25%, 20%, and 55% of energy as protein, fat, and carbohydrate, respectively) and 10En% diet (10%, 35%, and 55% of energy as protein, fat, and carbohydrate, respectively) in a randomized crossover design. Three days before the diets began, the subjects consumed a similar diet at home. Energy expenditure, substrate oxidation, and appetite scores were measured. RESULTS: The 25En% casein diet resulted in a 2.6% higher 24-h total energy expenditure (9.30 +/- 0.24 compared with 9.07 +/- 0.24 MJ/d; P < 0.01) and a higher sleeping metabolic rate (6.74 +/- 0.16 compared with 6.48 +/- 0.17 MJ/d; P < 0.001) than did the 10En% casein diet. With the 25En% casein diet, compared with the 10En% casein diet, the subjects were in positive protein balance (0.57 +/- 0.05 compared with -0.08 +/- 0.03 MJ/d; P < 0.0001) and negative fat balance (-0.83 +/- 0.14 compared with 0.11 +/- 0.17 MJ/d; P < 0.0001), whereas positive carbohydrate balances were not significantly different between diets. Satiety was 33% higher with the 25En% casein diet than with the 10En% casein diet (P < 0.05). CONCLUSION: A 25En% casein diet boosts energy expenditure, protein balance, satiety, and negative fat balance, which is beneficial to body weight management

    Nutrigenomics of Body Weight Regulation: A Rationale for Careful Dissection of Individual Contributors

    Get PDF
    Body weight stability may imply active regulation towards a certain physiological condition, a body weight setpoint. This interpretation is ill at odds with the world-wide increase in overweight and obesity. Until now, a body weight setpoint has remained elusive and the setpoint theory did not provide practical clues for body weight reduction interventions. For this an alternative theoretical model is necessary, which is available as the settling point model. The settling point model postulates that there is little active regulation towards a predefined body weight, but that body weight settles based on the resultant of a number of contributors, represented by the individual’s genetic predisposition, in interaction with environmental and socioeconomic factors, such as diet and lifestyle. This review refines the settling point model and argues that by taking body weight regulation from a settling point perspective, the road will be opened to careful dissection of the various contributors to establishment of body weight and its regulation. This is both necessary and useful. Nutrigenomic technologies may help to delineate contributors to body weight settling. Understanding how and to which extent the different contributors influence body weight will allow the design of weight loss and weight maintenance interventions, which hopefully are more successful than those that are currently available

    Hairy black holes in theories with massive gravitons

    Get PDF
    This is a brief survey of the known black hole solutions in the theories of ghost-free bigravity and massive gravity. Various black holes exist in these theories, in particular those supporting a massive graviton hair. However, it seems that solutions which could be astrophysically relevant are the same as in General Relativity, or very close to them. Therefore, the no-hair conjecture essentially applies, and so it would be hard to detect the graviton mass by observing black holes.Comment: References added. 20 pages, 3 figures, based on the talk given at the 7-th Aegean Summer School "Beyond Einstein's theory of gravity", September 201

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure

    Measurement of the Bottom contribution to non-photonic electron production in p+pp+p collisions at s\sqrt{s} =200 GeV

    Get PDF
    The contribution of BB meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in p+pp+p collisions at s=\sqrt{s} = 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted BB decay contribution is approximately 50% at a transverse momentum of pT5p_{T} \geq 5 GeV/cc. These measurements constrain the nuclear modification factor for electrons from BB and DD meson decays. The result indicates that BB meson production in heavy ion collisions is also suppressed at high pTp_{T}.Comment: 6 pages, 4 figures, accepted by PR
    corecore