846 research outputs found

    Novel sources of Flavor Changed Neutral Currents in the 331RHN331_{RHN} model

    Full text link
    Sources of Flavor Changed Neutral Currents (FCNC) naturally emerge from a well motivated framework called 3-3-1 with right-handed neutrinos model, 331RHN331_{RHN} for short, mediated by an extra neutral gauge boson ZZ^{\prime}. Following previous works we calculate these sources and in addition we derive new ones coming from CP-even and -odd neutral scalars which appear due to their non-diagonal interactions with the physical standard quarks. Furthermore we show that bounds related to the neutral mesons systems KLKSK_L-K_S and D10D20D_1^0 - D_2^0 may be significantly strengthened in the presence of these new interactions allowing us to infer stronger constraints on the parameter space of the model.Comment: Published version. 10 pages, 6 figure

    Digital skills of therapeutic radiographers/radiation therapists – Document analysis for a European educational curriculum

    Get PDF
    It is estimated that around 50% of cancer patients require Radiotherapy (RT) at some point during their treatment, hence Therapeutic Radiographers/Radiation Therapists (TR/RTTs) have a key role to play in patient management. It is essential for TR/RTTs to keep abreast with new technologies and continuously develop the digital skills necessary for safe RT practice. The RT profession and education is not regulated at European Union level, which leads to heterogeneity in the skills developed and practised among countries. This study aimed to explore the white and grey literature to collate data on the relevant digital skills required for TR/RTTs practice.info:eu-repo/semantics/publishedVersio

    An investigation of digital skills of therapeutic radiographers/radiation therapists: A european survey of proficiency level and future educational needs

    Get PDF
    This study aims to assess the proficiency level of digital skills, the factors influencing that level and the training needs of Therapeutic Radiographers/Radiation Therapists (TR/RTTs), due to the differences in technology availability and accessibility, variations in the regulation and education of TR/RTTs in European countries, and the lack of a digital skills framework. An online survey was distributed to TR/RTTs working in Europe to capture their self assessment of proficiency levels of digital skills when performing their clinical role. Information was also gathered regarding training, work experience and level of information and communication tech nology (ICT) skills. Quantitative measures were analysed using descriptive statistics and correlation between variables, and qualitative responses using thematic analysis. 101 respondents from 13 European countries completed the survey. Digital skills in treatment planning followed by management and research were the least developed skills, while the most developed were transversal digital skills followed by digital skills in treatment delivery. The Radio therapy areas of practice where TR/RTT has experience (e.g. Planning Image, Treatment Planning, Treatment), as well as the level of generic ICT skills (communication, content creation and problem solving), was related to the level of proficiency of TR/RTT digital skills. Greater scope of practice and level of generic ICT were associated with a higher level of TR/RTT digital skills. Thematic analysis allowed the identification of new sub-themes to be included in the training of TR/RTTs. Education and training of TR/RTTs should be improved and adapted to the current needs of digitalisation to avoid differences in digital proficiency levels. Implications for practice: Aligning TR/RTTs’ digital skill sets with emerging digitalisation will improve current practice and ensure the best care to all RT patients.info:eu-repo/semantics/publishedVersio

    Doubly charged Higgs from ee-γ\gamma scattering in the 3-3-1 Model

    Full text link
    We studied the production and signatures of doubly charged Higgs bosons in the process γeHE+\gamma e^- \rightarrow H^{--}E^+, where E+E^+ is a heavy lepton, at the ee+e^-e^+ International Linear Collider (ILC) and CERN Linear Collider (CLIC). The intermediate photons are given by the Weizsa¨\ddot{a}cker-Williams and laser backscattering distributions. We found that significant signatures are obtained by bremsstrahlung and backward Comptom scattering of laser. A clear signal can be obtained for doubly charged Higgs bosons, doubly charged gauge bosons and heavy leptons

    The seesaw mechanism at TeV scale in the 3-3-1 model with right-handed neutrinos

    Full text link
    We implement the seesaw mechanism in the 3-3-1 model with right-handed neutrinos. This is accomplished by the introduction of a scalar sextet into the model and the spontaneous violation of the lepton number. We identify the Majoron as a singlet under SUL(2)UY(1)SU_L(2)\otimes U_Y(1) symmetry, which makes it safe under the current bounds imposed by electroweak data. The main result of this work is that the seesaw mechanism works already at TeV scale with the outcome that the right-handed neutrino masses lie in the electroweak scale, in the range from MeV to tens of GeV. This window provides a great opportunity to test their appearance at current detectors, though when we contrast our results with some previous analysis concerning detection sensitivity at LHC, we conclude that further work is needed in order to validate this search.Comment: about 13 pages, no figure

    The Landau Pole and ZZ^{\prime} decays in the 331 bilepton model

    Full text link
    We calculate the decay widths and branching ratios of the extra neutral boson ZZ^{\prime} predicted by the 331 bilepton model in the framework of two different particle contents. These calculations are performed taken into account oblique radiative corrections, and Flavor Changing Neutral Currents (FCNC) under the ansatz of Matsuda as a texture for the quark mass matrices. Contributions of the order of 10110210^{-1}-10^{-2} are obtained in the branching ratios, and partial widths about one order of magnitude bigger in relation with other non- and bilepton models are also obtained. A Landau-like pole arise at 3.5 TeV considering the full particle content of the minimal model (MM), where the exotic sector is considered as a degenerated spectrum at 3 TeV scale. The Landau pole problem can be avoid at the TeV scales if a new leptonic content running below the threshold at % 3 TeV is implemented as suggested by other authors.Comment: 20 pages, 5 figures, LaTeX2

    (B-L) Symmetry vs. Neutrino Seesaw

    Full text link
    We compute the effective coupling of the Majoron to W bosons at \cO(\hbar) by evaluating the matrix element of the (B-L) current between the vacuum and a W+WW^+W^- state. The (B-L) anomaly vanishes, but the amplitude does not vanish as a result of a UV finite and non-local contribution which is entirely due to the mixing between left-chiral and right-chiral neutrinos. The result shows how anomaly-like couplings may arise in spite of the fact that the (B-L) current remains exactly conserved to all orders in \hbar, lending additional support to our previous proposal to identify the Majoron with the axion.Comment: 13 pages, 1 figure, with additional explanations and clarification

    Static quantities of the W boson in the SU_L(3) X U_X(1) model with right-handed neutrinos

    Full text link
    The static electromagnetic properties of the WW boson, Δκ\Delta \kappa and ΔQ\Delta Q, are calculated in the SU_L(3)} \times U_X(1) model with right-handed neutrinos. The new contributions from this model arise from the gauge and scalar sectors. In the gauge sector there is a new contribution from a complex neutral gauge boson Y0Y^0 and a singly-charged gauge boson Y±Y^\pm. The mass of these gauge bosons, called bileptons, is expected to be in the range of a few hundreds of GeV according to the current bounds from experimental data. If the bilepton masses are of the order of 200 GeV, the size of their contribution is similar to that obtained in other weakly coupled theories. However the contributions to both ΔQ\Delta Q and Δκ\Delta \kappa are negligible for very heavy or degenerate bileptons. As for the scalar sector, an scenario is examined in which the contribution to the WW form factors is identical to that of a two-Higgs-doublet model. It is found that this sector would not give large corrections to Δκ\Delta \kappa and ΔQ\Delta Q.Comment: New material included. Final version to apppear in Physical Review

    Explaining the Higgs Decays at the LHC with an Extended Electroweak Model

    Get PDF
    We show that the recent discovery of a new boson at the LHC, which we assume to be a Higgs boson, and the observed enhancement in its diphoton decays compared to the SM prediction, can be explained by a new doublet of charged vector bosons from an extended electroweak gauge sector model with SU(3)_C\otimesSU(3)_L\otimesU(1)_X symmetry. Our results show a good agreement between our theoretical expected sensitivity to a 126--125 GeV Higgs boson and the experimental significance observed in the diphoton channel at the 8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also taken into account, in order to anticipate a possible confirmation of deficits in the branching ratios into ZZZZ^*, WWWW^*, bottom quarks, and tau leptons.Comment: 16 pages, 5 figure
    corecore