846 research outputs found
Novel sources of Flavor Changed Neutral Currents in the model
Sources of Flavor Changed Neutral Currents (FCNC) naturally emerge from a
well motivated framework called 3-3-1 with right-handed neutrinos model,
for short, mediated by an extra neutral gauge boson .
Following previous works we calculate these sources and in addition we derive
new ones coming from CP-even and -odd neutral scalars which appear due to their
non-diagonal interactions with the physical standard quarks. Furthermore we
show that bounds related to the neutral mesons systems and may be significantly strengthened in the presence of these new
interactions allowing us to infer stronger constraints on the parameter space
of the model.Comment: Published version. 10 pages, 6 figure
Digital skills of therapeutic radiographers/radiation therapists – Document analysis for a European educational curriculum
It is estimated that around 50% of cancer patients require Radiotherapy (RT) at some point during their treatment, hence Therapeutic Radiographers/Radiation Therapists (TR/RTTs) have a key role to play in patient management. It is essential for TR/RTTs to keep abreast with new technologies and continuously develop the digital skills necessary for safe RT practice. The RT profession and education is not regulated at European Union level, which leads to heterogeneity in the skills developed and practised among countries. This study aimed to explore the white and grey literature to collate data on the relevant digital skills required for TR/RTTs practice.info:eu-repo/semantics/publishedVersio
An investigation of digital skills of therapeutic radiographers/radiation therapists: A european survey of proficiency level and future educational needs
This study aims to assess the proficiency level of digital skills, the factors influencing that level and the training needs of Therapeutic Radiographers/Radiation Therapists (TR/RTTs), due to the differences in technology availability and accessibility, variations in the regulation and education of TR/RTTs in European countries, and the lack of a digital skills framework. An online survey was distributed to TR/RTTs working in Europe to capture their self assessment of proficiency levels of digital skills when performing their clinical role. Information was also gathered regarding training, work experience and level of information and communication tech nology (ICT) skills. Quantitative measures were analysed using descriptive statistics and correlation between variables, and qualitative responses using thematic analysis. 101 respondents from 13 European countries completed the survey. Digital skills in treatment planning followed by management and research were the least developed skills, while the most developed were transversal digital skills followed by digital skills in treatment delivery. The Radio therapy areas of practice where TR/RTT has experience (e.g. Planning Image, Treatment Planning, Treatment), as well as the level of generic ICT skills (communication, content creation and problem solving), was related to the level of proficiency of TR/RTT digital skills. Greater scope of practice and level of generic ICT were associated with a higher level of TR/RTT digital skills. Thematic analysis allowed the identification of new sub-themes to be included in the training of TR/RTTs. Education and training of TR/RTTs should be improved and adapted to the current needs of digitalisation to avoid differences in digital proficiency levels. Implications for practice: Aligning TR/RTTs’ digital skill sets with emerging digitalisation will improve current practice and ensure the best care to all RT patients.info:eu-repo/semantics/publishedVersio
Doubly charged Higgs from - scattering in the 3-3-1 Model
We studied the production and signatures of doubly charged Higgs bosons in
the process , where is a heavy lepton,
at the International Linear Collider (ILC) and CERN Linear Collider
(CLIC). The intermediate photons are given by the Weizscker-Williams
and laser backscattering distributions. We found that significant signatures
are obtained by bremsstrahlung and backward Comptom scattering of laser. A
clear signal can be obtained for doubly charged Higgs bosons, doubly charged
gauge bosons and heavy leptons
The seesaw mechanism at TeV scale in the 3-3-1 model with right-handed neutrinos
We implement the seesaw mechanism in the 3-3-1 model with right-handed
neutrinos. This is accomplished by the introduction of a scalar sextet into the
model and the spontaneous violation of the lepton number. We identify the
Majoron as a singlet under symmetry, which makes it
safe under the current bounds imposed by electroweak data. The main result of
this work is that the seesaw mechanism works already at TeV scale with the
outcome that the right-handed neutrino masses lie in the electroweak scale, in
the range from MeV to tens of GeV. This window provides a great opportunity to
test their appearance at current detectors, though when we contrast our results
with some previous analysis concerning detection sensitivity at LHC, we
conclude that further work is needed in order to validate this search.Comment: about 13 pages, no figure
The Landau Pole and decays in the 331 bilepton model
We calculate the decay widths and branching ratios of the extra neutral boson
predicted by the 331 bilepton model in the framework of two
different particle contents. These calculations are performed taken into
account oblique radiative corrections, and Flavor Changing Neutral Currents
(FCNC) under the ansatz of Matsuda as a texture for the quark mass matrices.
Contributions of the order of are obtained in the branching
ratios, and partial widths about one order of magnitude bigger in relation with
other non- and bilepton models are also obtained. A Landau-like pole arise at
3.5 TeV considering the full particle content of the minimal model (MM), where
the exotic sector is considered as a degenerated spectrum at 3 TeV scale. The
Landau pole problem can be avoid at the TeV scales if a new leptonic content
running below the threshold at TeV is implemented as suggested by other
authors.Comment: 20 pages, 5 figures, LaTeX2
(B-L) Symmetry vs. Neutrino Seesaw
We compute the effective coupling of the Majoron to W bosons at \cO(\hbar)
by evaluating the matrix element of the (B-L) current between the vacuum and a
state. The (B-L) anomaly vanishes, but the amplitude does not vanish
as a result of a UV finite and non-local contribution which is entirely due to
the mixing between left-chiral and right-chiral neutrinos. The result shows how
anomaly-like couplings may arise in spite of the fact that the (B-L) current
remains exactly conserved to all orders in , lending additional support
to our previous proposal to identify the Majoron with the axion.Comment: 13 pages, 1 figure, with additional explanations and clarification
Static quantities of the W boson in the SU_L(3) X U_X(1) model with right-handed neutrinos
The static electromagnetic properties of the boson, and
, are calculated in the SU_L(3)} \times U_X(1) model with
right-handed neutrinos. The new contributions from this model arise from the
gauge and scalar sectors. In the gauge sector there is a new contribution from
a complex neutral gauge boson and a singly-charged gauge boson .
The mass of these gauge bosons, called bileptons, is expected to be in the
range of a few hundreds of GeV according to the current bounds from
experimental data. If the bilepton masses are of the order of 200 GeV, the size
of their contribution is similar to that obtained in other weakly coupled
theories. However the contributions to both and are
negligible for very heavy or degenerate bileptons. As for the scalar sector, an
scenario is examined in which the contribution to the form factors is
identical to that of a two-Higgs-doublet model. It is found that this sector
would not give large corrections to and .Comment: New material included. Final version to apppear in Physical Review
Explaining the Higgs Decays at the LHC with an Extended Electroweak Model
We show that the recent discovery of a new boson at the LHC, which we assume
to be a Higgs boson, and the observed enhancement in its diphoton decays
compared to the SM prediction, can be explained by a new doublet of charged
vector bosons from an extended electroweak gauge sector model with
SU(3)_C\otimesSU(3)_L\otimesU(1)_X symmetry. Our results show a good
agreement between our theoretical expected sensitivity to a 126--125 GeV Higgs
boson and the experimental significance observed in the diphoton channel at the
8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also
taken into account, in order to anticipate a possible confirmation of deficits
in the branching ratios into , , bottom quarks, and tau leptons.Comment: 16 pages, 5 figure
- …