254 research outputs found
Grain Surface Models and Data for Astrochemistry
AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ 876
Investigations of two resonant planets orbiting a star or two resonant
satellites orbiting a planet often rely on a few resonant and secular terms in
order to obtain a representative quantitative description of the system's
dynamical evolution. We present a semianalytic model which traces the orbital
evolution of any two resonant bodies in a first- through fourth-order
eccentricity or inclination-based resonance dominated by the resonant and
secular arguments of the user's choosing. By considering the variation of
libration width with different orbital parameters, we identify regions of phase
space which give rise to different resonant ''depths,'' and propose methods to
model libration profiles. We apply the model to the GJ 876 extrasolar planetary
system, quantify the relative importance of the relevant resonant and secular
contributions, and thereby assess the goodness of the common approximation of
representing the system by just the presumably dominant terms. We highlight the
danger in using ''order'' as the metric for accuracy in the orbital solution by
revealing the unnatural libration centers produced by the second-order, but not
first-order, solution, and by demonstrating that the true orbital solution lies
somewhere ''in-between'' the third- and fourth-order solutions. We also present
formulas used to incorporate perturbations from central-body oblateness and
precession, and a protoplanetary or protosatellite thin disk with gaps, into a
resonant system. We quantify these contributions to the GJ 876 system, and
thereby highlight the conditions which must exist for multi-planet exosystems
to be significantly influenced by such factors. We find that massive enough
disks may convert resonant libration into circulation; such disk-induced
signatures may provide constraints for future studies of exoplanet systems.Comment: 39 pages of body text, 21 figures, 5 tables, 1 appendix, accepted for
publication in Celestial Mechanics and Dynamical Astronom
Physics with the KLOE-2 experiment at the upgraded DANE
Investigation at a --factory can shed light on several debated issues
in particle physics. We discuss: i) recent theoretical development and
experimental progress in kaon physics relevant for the Standard Model tests in
the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum
Mechanics from time evolution of entangled kaon states, iii) the interest for
improving on the present measurements of non-leptonic and radiative decays of
kaons and eta/eta mesons, iv) the contribution to understand the
nature of light scalar mesons, and v) the opportunity to search for narrow
di-lepton resonances suggested by recent models proposing a hidden dark-matter
sector. We also report on the physics in the continuum with the
measurements of (multi)hadronic cross sections and the study of gamma gamma
processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added
reference to section
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
- …