1,771 research outputs found
Application of group VIII metals to organic synthesis
Imperial Users onl
Cumulant ratios and their scaling functions for Ising systems in strip geometries
We calculate the fourth-order cumulant ratio (proposed by Binder) for the
two-dimensional Ising model in a strip geometry L x oo. The Density Matrix
Renormalization Group method enables us to consider typical open boundary
conditions up to L=200. Universal scaling functions of the cumulant ratio are
determined for strips with parallel as well as opposing surface fields.Comment: 4 pages, RevTex, one .eps figure; references added, format change
Limits on the gravity wave contribution to microwave anisotropies
We present limits on the fraction of large angle microwave anisotropies which
could come from tensor perturbations. We use the COBE results as well as
smaller scale CMB observations, measurements of galaxy correlations, abundances
of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to
provide conservative limits on the tensor-to-scalar ratio for standard
inflationary models. For power-law inflation, for example, we find T/S<0.52 at
95% confidence, with a similar constraint for phi^p potentials. However, for
models with tensor amplitude unrelated to the scalar spectral index it is still
currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D.
Calculations extended to blue spectral index, Fig. 6 added, discussion of
results expande
Small x gluon from exclusive J/psi production
Exclusive J/psi production, gamma* p -> J/psi p, offers a unique opportunity
to determine the gluon density of the proton in the small x domain. We use the
available HERA data to determine the gluon distribution in the region 10^{-4}
<~ x <~ 10^{-2} and 2 <~ Q^2 <~ 10 GeV^2, where the uncertainty on the gluon
extracted from the global parton analyses is large. The gluon density is found
to be approximately flat at the lower scale; it is compared with those of
recent global analyses.Comment: 13 pages, 5 figure
Recommended from our members
Houdini: a remote mobile platform for tank waste retrieval tasks
RedZone has developed Houdini{trademark}, a folding frame vehicle for work in waste storage tanks and other confined-access areas. Houdini is a tethered, hydraulically-powered platform that folds to fit through small openings. Once deployed, the vehicle unfolds to provide a substantial work platform for the deployment of a wide variety of tools. The Houdini system will perform wheel removal, waste retrieval, waste mobilization, waste size reduction, and other tank waste retrieval and decommissioning tasks. Within the DOE Complex, 332 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. The ultimate goal of the program is to develop and commercialize the Houdini system for broad application throughout the DOE Complex
Expansion algorithm for the density matrix
A purification algorithm for expanding the single-particle density matrix in
terms of the Hamiltonian operator is proposed. The scheme works with a
predefined occupation and requires less than half the number of matrix-matrix
multiplications compared to existing methods at low (90%)
occupancy. The expansion can be used with a fixed chemical potential in which
case it is an asymmetric generalization of and a substantial improvement over
grand canonical McWeeny purification. It is shown that the computational
complexity, measured as number of matrix multiplications, essentially is
independent of system size even for metallic materials with a vanishing band
gap.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
An improved cosmological bound on the tau-neutrino mass
We consider the influence of non-equilibrium electronic neutrinos (and
anti-neutrinos) on the neutron-to-proton ratio. These neutrinos would come from
massive annihilations . For sufficiently large masses this new effect would strongly
enhance the (n/p)-ratio, leading to a very stringent bound on the
mass, even adopting a rather weak upper bound on the effective number on
neutrino species during nucleosynthesis.Comment: 10 pages, LaTex file + 1 figure compressed using uufile
Refining trophic dynamics through multi-factor Bayesian mixing models: A case study of subterranean beetles
© 2020 The Authors.
Ecology and Evolution published by John Wiley & Sons Ltd Food web dynamics are vital in shaping the functional ecology of ecosystems. However, trophic ecology is still in its infancy in groundwater ecosystems due to the cryptic nature of these environments. To unravel trophic interactions between subterranean biota, we applied an interdisciplinary Bayesian mixing model design (multi-factor BMM) based on the integration of faunal C and N bulk tissue stable isotope data (d13C and d15N) with radiocarbon data (?14C), and prior information from metagenomic analyses. We further compared outcomes from multi-factor BMM with a conventional isotope double proxy mixing model (SIA BMM), triple proxy (d13C, d15N, and ?14C, multi-proxy BMM), and double proxy combined with DNA prior information (SIA + DNA BMM) designs. Three species of subterranean beetles (Paroster macrosturtensis, Paroster mesosturtensis, and Paroster microsturtensis) and their main prey items Chiltoniidae amphipods (AM1: Scutachiltonia axfordi and AM2: Yilgarniella sturtensis), cyclopoids and harpacticoids from a calcrete in Western Australia were targeted. Diet estimations from stable isotope only models (SIA BMM) indicated homogeneous patterns with modest preferences for amphipods as prey items. Multi-proxy BMM suggested increased—and species-specific—predatory pressures on amphipods coupled with high rates of scavenging/predation on sister species. SIA + DNA BMM showed marked preferences for amphipods AM1 and AM2, and reduced interspecific scavenging/predation on Paroster species. Multi-factorial BMM revealed the most precise estimations (lower overall SD and very marginal beetles' interspecific interactions), indicating consistent preferences for amphipods AM1 in all the beetles' diets. Incorporation of genetic priors allowed crucial refining of the feeding preferences, while integration of more expensive radiocarbon data as a third proxy (when combined with genetic data) produced more precise outcomes but close dietary reconstruction to that from SIA + DNA BMM. Further multidisciplinary modeling from other groundwater environments will help elucidate the potential behind these designs and bring light to the feeding ecology of one the most vital ecosystems worldwide
- …