1,771 research outputs found

    Application of group VIII metals to organic synthesis

    Get PDF
    Imperial Users onl

    Cumulant ratios and their scaling functions for Ising systems in strip geometries

    Full text link
    We calculate the fourth-order cumulant ratio (proposed by Binder) for the two-dimensional Ising model in a strip geometry L x oo. The Density Matrix Renormalization Group method enables us to consider typical open boundary conditions up to L=200. Universal scaling functions of the cumulant ratio are determined for strips with parallel as well as opposing surface fields.Comment: 4 pages, RevTex, one .eps figure; references added, format change

    Limits on the gravity wave contribution to microwave anisotropies

    Get PDF
    We present limits on the fraction of large angle microwave anisotropies which could come from tensor perturbations. We use the COBE results as well as smaller scale CMB observations, measurements of galaxy correlations, abundances of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to provide conservative limits on the tensor-to-scalar ratio for standard inflationary models. For power-law inflation, for example, we find T/S<0.52 at 95% confidence, with a similar constraint for phi^p potentials. However, for models with tensor amplitude unrelated to the scalar spectral index it is still currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D. Calculations extended to blue spectral index, Fig. 6 added, discussion of results expande

    Small x gluon from exclusive J/psi production

    Get PDF
    Exclusive J/psi production, gamma* p -> J/psi p, offers a unique opportunity to determine the gluon density of the proton in the small x domain. We use the available HERA data to determine the gluon distribution in the region 10^{-4} <~ x <~ 10^{-2} and 2 <~ Q^2 <~ 10 GeV^2, where the uncertainty on the gluon extracted from the global parton analyses is large. The gluon density is found to be approximately flat at the lower scale; it is compared with those of recent global analyses.Comment: 13 pages, 5 figure

    Expansion algorithm for the density matrix

    Full text link
    A purification algorithm for expanding the single-particle density matrix in terms of the Hamiltonian operator is proposed. The scheme works with a predefined occupation and requires less than half the number of matrix-matrix multiplications compared to existing methods at low (90%) occupancy. The expansion can be used with a fixed chemical potential in which case it is an asymmetric generalization of and a substantial improvement over grand canonical McWeeny purification. It is shown that the computational complexity, measured as number of matrix multiplications, essentially is independent of system size even for metallic materials with a vanishing band gap.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    An improved cosmological bound on the tau-neutrino mass

    Get PDF
    We consider the influence of non-equilibrium electronic neutrinos (and anti-neutrinos) on the neutron-to-proton ratio. These neutrinos would come from massive ντ\nu_\tau annihilations νˉτντ→νˉeνe\bar \nu_\tau \nu_\tau \rightarrow \bar \nu_e \nu_e. For sufficiently large ντ\nu_\tau masses this new effect would strongly enhance the (n/p)-ratio, leading to a very stringent bound on the ντ\nu_\tau mass, even adopting a rather weak upper bound on the effective number on neutrino species during nucleosynthesis.Comment: 10 pages, LaTex file + 1 figure compressed using uufile

    Refining trophic dynamics through multi-factor Bayesian mixing models: A case study of subterranean beetles

    Get PDF
    © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd Food web dynamics are vital in shaping the functional ecology of ecosystems. However, trophic ecology is still in its infancy in groundwater ecosystems due to the cryptic nature of these environments. To unravel trophic interactions between subterranean biota, we applied an interdisciplinary Bayesian mixing model design (multi-factor BMM) based on the integration of faunal C and N bulk tissue stable isotope data (d13C and d15N) with radiocarbon data (?14C), and prior information from metagenomic analyses. We further compared outcomes from multi-factor BMM with a conventional isotope double proxy mixing model (SIA BMM), triple proxy (d13C, d15N, and ?14C, multi-proxy BMM), and double proxy combined with DNA prior information (SIA + DNA BMM) designs. Three species of subterranean beetles (Paroster macrosturtensis, Paroster mesosturtensis, and Paroster microsturtensis) and their main prey items Chiltoniidae amphipods (AM1: Scutachiltonia axfordi and AM2: Yilgarniella sturtensis), cyclopoids and harpacticoids from a calcrete in Western Australia were targeted. Diet estimations from stable isotope only models (SIA BMM) indicated homogeneous patterns with modest preferences for amphipods as prey items. Multi-proxy BMM suggested increased—and species-specific—predatory pressures on amphipods coupled with high rates of scavenging/predation on sister species. SIA + DNA BMM showed marked preferences for amphipods AM1 and AM2, and reduced interspecific scavenging/predation on Paroster species. Multi-factorial BMM revealed the most precise estimations (lower overall SD and very marginal beetles' interspecific interactions), indicating consistent preferences for amphipods AM1 in all the beetles' diets. Incorporation of genetic priors allowed crucial refining of the feeding preferences, while integration of more expensive radiocarbon data as a third proxy (when combined with genetic data) produced more precise outcomes but close dietary reconstruction to that from SIA + DNA BMM. Further multidisciplinary modeling from other groundwater environments will help elucidate the potential behind these designs and bring light to the feeding ecology of one the most vital ecosystems worldwide
    • …
    corecore