283 research outputs found

    A unifying computational fluid dynamics investigation on the river-like to river-reversed secondary circulation in submarine channel bends

    No full text
    A numerical model of saline density currents across a triple-bend sinuous submerged channel enclosed by vertical sidewalls is developed. The unsteady, non-Boussinesq, turbulent form of the Reynolds Averaged Navier-Stokes equations is employed to study the flow structure in a quasi-steady state. Recursive tests are performed with axial slopes of 0.08°, 0.43°, 1.5°, and 2.5°. For each numerical experiment, the downstream and vertical components of the fluid velocity, density, and turbulent kinetic energy are presented at four distinct locations within the channel cross section. It is observed that a crucial change in the flow pattern at the channel bends is observed as the axial slope is increased. At low values of the axial slope a typical river-like pattern is found. At an inclination of 1.5°a transition starts to occur. When the numerical test is repeated with an axial slope of 2.5°, a clearly visible river-reversed secondary circulation is achieved. The change in the cross-sectional flow pattern appears to be associated with the spatial displacement of the core of the maximum downstream fluid velocity. Therefore, the axial slope in this series of experiments is linked to the velocity structure of the currents, with the height of the velocity maximum decreasing as a function of increasing slope. As such, the axial slope should be regarded also as a surrogate for flows with enhanced density or sediment stratification and higher Froude numbers. The work unifies the apparently paradoxical experimental and numerical results on secondary circulation in submarine channels

    Directed assembly of optically bound matter

    Get PDF
    We present a study of optically bound matter formation in a counter-propagating evanescent field, exploiting total internal reflection on a prism surface. Small ensembles of silica microspheres are assembled in a controlled manner using optical tweezers. The structures and dynamics of the resulting optically bound chains are interpreted using a simulation implementing generalized Lorentz-Mie theory. In particular, we observe enhancement of the scattering force along the propagation direction of the optically bound colloidal chains leading to a microscopic analogue of a driven pendulum which, at least superficially, resembles Newton’s cradle

    Disorder and relaxation mode in the lattice dynamics of PbMg1/3_{1/3}Nb2/3_{2/3}O3_3 relaxor ferroelectric

    Full text link
    The low-energy part of vibration spectrum in PbMg1/3_{1/3}Nb2/3_{2/3}O3_3 relaxor ferroelectric was studied by inelastic neutron scattering. We observed the coexistence of a resolution-limited central peak with strong quasielastic scattering. The line-width of the quasielastic component follows a Γ0+Dq2\Gamma_0+Dq^2 dependence. We find that Γ0\Gamma_0 is temperature-dependent. The relaxation time follows the Arrhenius law well. The presence of a relaxation mode associated with quasi-elastic scattering in PMN indicates that order-disorder behaviour plays an important r\^ole in the dynamics of diffuse phase transitions

    Disease-modifying effects of an SCAF4 structural variant in a predominantly SOD1 ALS cohort

    Get PDF
    Objective To test the hypothesis that rs573116164 will have disease-modifying effects in patients with superoxide dismutase 1 (SOD1) familial amyotrophic lateral sclerosis (fALS), we characterized rs573116164 within a cohort of 190 patients with fALS and 560 healthy age-matched controls to assess the variant for association with various measures of disease. Methods Using a previously described bioinformatics evaluation algorithm, a polymorphic short structural variant associated with SOD1 was identified according to its theoretical effect on gene expression. An 12–18 poly-T repeat (rs573116164) within the 3â€Č untranslated region of serine and arginine rich proteins-related carboxy terminal domain associated factor 4 (SCAF4), a gene that is adjacent to SOD1, was assessed for disease association and influence on survival and age at onset in an fALS cohort using PCR, Sanger sequencing, and capillary separation techniques for allele detection. Results In a North American cohort of predominantly SOD1 fALS patients (n =190) and age-matched healthy controls (n = 560), we showed that carriage of an 18T SCAF4 allele was associated with disease within this cohort (odds ratio [OR] 6.6; 95% confidence interval [CI] 3.9–11.2; p = 4.0e-11), but also within non-SOD1 cases (n = 27; OR 5.3; 95% CI 1.9–14.5; p = 0.0014). This finding suggests genetically SOD1-independent effects of SCAF4 on fALS susceptibility. Furthermore, carriage of an 18T allele was associated with a 26-month reduction in survival time (95% CI 6.6–40.8; p = 0.014), but did not affect age at onset of disease. Conclusions The findings in this fALS cohort suggest that rs573116164 could have SOD1-independent and broader relevance in ALS, warranting further investigation in other fALS and sporadic ALS cohorts, as well as studies of functional effects of the 18T variant on gene expression

    Coupled Dipole Method Determination of the Electromagnetic Force on a Particle over a Flat Dielectric Substrate

    Full text link
    We present a theory to compute the force due to light upon a particle on a dielectric plane by the Coupled Dipole Method (CDM). We show that, with this procedure, two equivalent ways of analysis are possible, both based on Maxwell's stress tensor. The interest in using this method is that the nature and size or shape of the object, can be arbitrary. Even more, the presence of a substrate can be incorporated. To validate our theory, we present an analytical expression of the force due to the light acting on a particle either in presence, or not, of a surface. The plane wave illuminating the sphere can be either propagating or evanescent. Both two and three dimensional calculations are studied.Comment: 10 pages, 8 figures and 3 table

    The troublesome ticks research protocol: Developing a comprehensive, multidiscipline research plan for investigating human tick-associated disease in Australia

    Get PDF
    In Australia, there is a paucity of data about the extent and impact of zoonotic tick-related illnesses. Even less is understood about a multifaceted illness referred to as Debilitating Symptom Complexes Attributed to Ticks (DSCATT). Here, we describe a research plan for investigating the aetiology, pathophysiology, and clinical outcomes of human tick-associated disease in Australia. Our approach focuses on the transmission of potential pathogens and the immunological responses of the patient after a tick bite. The protocol is strengthened by prospective data collection, the recruitment of two external matched control groups, and sophisticated integrative data analysis which, collectively, will allow the robust demonstration of associations between a tick bite and the development of clinical and pathological abnormalities. Various laboratory analyses are performed including metagenomics to investigate the potential transmission of bacteria, protozoa and/or viruses during tick bite. In addition, multi-omics technology is applied to investigate links between host immune responses and potential infectious and non-infectious disease causations. Psychometric profiling is also used to investigate whether psychological attributes influence symptom development. This research will fill important knowledge gaps about tick-borne diseases. Ultimately, we hope the results will promote improved diagnostic outcomes, and inform the safe management and treatment of patients bitten by ticks in Australia

    The effects of compression on single and multiphase flow in a model polymer electrolyte membrane fuel cell gas diffusion layer

    Get PDF
    A two-dimensional study of an idealised fibrous medium representing the gas diffusion layer of a PEMFC is conducted using computational fluid dynamics. Beginning with an isotropic case the medium is compressed uni-directionally to observe the effects on single and multiphase flow. Relations between the compression ratio and the permeability of the medium are deduced and key parameters dictating the changes in flow are elucidated. The main conclusions are that whilst compression reduces the absolute permeability of an isotropic medium, the creation of anisotropic geometry results in preferential liquid water pathways. The most important parameter for capillary flow, in uniformly hydrophobic media, is the minimum fibre spacing normal to the flow path. The effect is less pronounced with decreasing contact angle and non-existent for neutrally wettable media

    Optimised mixing and flow resistance during shear flow over a rib roughened boundary

    Get PDF
    A series of numerical investigations has been performed to study the effect of lower boundary roughness on turbulent flow in a two-dimensional channel. The roughness spacing to height ratio, w/k, has been investigated over the range 0.12 to 402 by varying the horizontal rib spacing. The square roughness elements each have a cross-sectional area of (0.05 H)2, where H is the full channel height. The Reynolds number, Reτ is fixed based on the value of the imposed pressure gradient, dp/dx, and is in the range 6.3 × 103 − 4.5 × 104. A Reynolds Averaged Navier–Stokes (RANS) based turbulence modelling approach is adopted using a commercial CFD code, ANSYS-CFX 14.0. Measurements of eddy viscosity and friction factor have been made over this range to establish the optimum spacings to produce maximum turbulence enhancement, mixing and resistance to flow. These occur when w/k is approximately 7. It is found that this value is only weakly dependent on Reynolds number, and the decay rate of turbulence enhancement as a function of w/k ratio beyond this optimum spacing is slow. The implications for heat transfer design optimisation and particle transport are considered

    Mystify me: Coke, terror and the symbolic immortality boost

    Get PDF
    A panel on “Marketing as Mystification” convened at the 2011 Academy of Marketing conference in Liverpool. Ideas from the Liverpool event were supplemented by commentaries from selected other authors. Each commentary explores the aspects of “mystification” observable in marketing discourses and practices. In what follows, Laufer interprets marketing mystification as modern form of sophism, Dholakia and Firat discuss mystifying ways that inequality is marketed, Varman analyzes the perversion and mystification of “development” via neoliberal marketing of “social entrepreneurship,” Mikkonen explores mystifying marketing representations of gays and lesbians, and Freund and Jacobi present a fascinating interpretation of how Coca-Cola advertising mystically reassures us that our difficult, dangerous lifeworld is actually quite hunky-dory. </jats:p

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
    • 

    corecore