20 research outputs found

    First Assessment of the Impacts of the COVID-19 Pandemic on Global Marine Recreational Fisheries

    Get PDF
    This work is the result of an international research effort to determine the main impacts of the COVID-19 pandemic on marine recreational fishing. Changes were assessed on (1) access to fishing, derived from lockdowns and other mobility restrictions; (2) ecosystems, because of alterations in fishing intensity and human presence; (3) the blue economy, derived from alterations in the investments and expenses of the fishers; and (4) society, in relation to variations in fishers’ health and well-being. For this, a consultation with experts from 16 countries was carried out, as well as an international online survey aimed at recreational fishers, that included specific questions designed to capture fishers’ heterogeneity in relation to behavior, skills and know-how, and vital involvement. Fishers’ participation in the online survey (5,998 recreational fishers in 15 countries) was promoted through a marketing campaign. The sensitivity of the fishers’ clustering procedure, based on the captured heterogeneity, was evaluated by SIMPER analysis and by generalized linear models. Results from the expert consultation highlighted a worldwide reduction in marine recreational fishing activity. Lower human-driven pressures are expected to generate some benefits for marine ecosystems. However, experts also identified high negative impacts on the blue economy, as well as on fisher health and well-being because of the loss of recreational fishing opportunities. Most (98%) of the fishers who participated in the online survey were identified as advanced, showing a much higher degree of commitment to recreational fishing than basic fishers (2%). Advanced fishers were, in general, more pessimistic about the impacts of COVID-19, reporting higher reductions in physical activity and fish consumption, as well as poorer quality of night rest, foul mood, and raised more concerns about their health status. Controlled and safe access to marine recreational fisheries during pandemics would provide benefits to the health and well-being of people and reduce negative socioeconomic impacts, especially for vulnerable social groups.Versión del edito

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Coherent J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    The ALICE Collaboration has made the first measurement at the LHC of J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at sNN=2.76 TeV. The J/ψ is identified via its dimuon decay in the forward rapidity region with the muon spectrometer for events where the hadronic activity is required to be minimal. The analysis is based on an event sample corresponding to an integrated luminosity of about 55 ÎŒb−1. The cross section for coherent J/ψ production in the rapidity interval −3.6<y<−2.6 is measured to be dσJ/ψcoh/dy=1.00±0.18(stat)−0.26+0.24(syst) mb. The result is compared to theoretical models for coherent J/ψ production and found to be in good agreement with those models which include nuclear gluon shadowing

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Get PDF
    We present measurements of Underlying Event observables in pp collisions at s√=0.9 and 7TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p T,LT in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p T thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2–3 between the lower and higher collision energies, depending on the track p T threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed p T in the Transverse region by about 10–30%

    Multi-strange baryon production in pp collisions at √s=7 TeV with ALICE

    No full text
    A measurement of the multi-strange Ξ− and Ω− baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for inelastic proton–proton collisions at a centre-of-mass energy of 7 TeV. The transverse momentum (pT) distributions were studied at mid-rapidity (|y|6.0 GeV/c. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of (Ω−+Ω¯+)/(Ξ−+Ξ¯+) as a function of transverse mass

    Inclusive J/ψ production in pp collisions at √s=2.76 TeV

    No full text
    The ALICE Collaboration has measured inclusive J/ψ production in pp collisions at a center-of-mass energy √s=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5<y<4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are Linte=1.1 nb−1 and LintÎŒ=19.9 nb−1, and the corresponding signal statistics are NJ/ψe+e−=59±14 and NJ/ψΌ+Ό−=1364±53. We present dσJ/ψ/dy for the two rapidity regions under study and, for the forward-y range, d2σJ/ψ/dydpt in the transverse momentum domain 0<pt<8 GeV/c. The results are compared with previously published results at s=7 TeV and with theoretical calculations

    Neutral pion and η meson production in proton–proton collisions at √s=0.9 TeV and s=√7 TeV

    No full text
    he first measurements of the invariant differential cross sections of inclusive π0 and η meson production at mid-rapidity in proton–proton collisions at s=0.9 TeV and s=7 TeV are reported. The π0 measurement covers the ranges 0.4<pT<7 GeV/c and 0.3<pT<25 GeV/c for these two energies, respectively. The production of η mesons was measured at s=√7 TeV in the range 0.4<pT<15 GeV/c. Next-to-Leading Order perturbative QCD calculations, which are consistent with the π0 spectrum at s=0.9 TeV, overestimate those of π0 and η mesons at s=√7 TeV, but agree with the measured η/π0 ratio at s=√7 TeV
    corecore