312 research outputs found

    Structural changes in borosilicate glasses as a function of Fe2O3 content: A multi-technique approach

    Get PDF
    Three series of borosilicate glasses were prepared, ranging from simple ternary sodium borosilicate glasses (SCFe series), to complex borosilicate glasses (CCFe Series), to high-level radioactive waste analogue glasses (HAFe series). 57Fe Mössbauer and Fe K-edge XANES spectroscopies showed that the iron exists exclusively as Fe3+ in predominantly distorted tetrahedral structures ([4]Fe3+), with evidence for lower abundances of higher-coordinated [5 or 6]Fe3+. Raman, B K-edge XANES, and XPS spectroscopies qualitatively demonstrated that Fe3+ preferentially integrates into the borosilicate network through the silicate sub-network in the simple glasses, whereas in the complex glasses it preferentially integrates through the borate sub-network. The [4]B3+ fraction for the SCFe and CCFe glasses showed minimal changes as a function of Fe content, indicating that Fe concentration has no effect on boron coordination and is- therefore unlikely to be competing with [4]B3+ groups for charge compensation, qualitatively supporting the presence of competing tetrahedral avoidance hierarchies

    Modeling electrolytically top gated graphene

    Get PDF
    We investigate doping of a single-layer graphene in the presence of electrolytic top gating. The interfacial phenomena is modeled using a modified Poisson-Boltzmann equation for an aqueous solution of simple salt. We demonstrate both the sensitivity of graphene's doping levels to the salt concentration and the importance of quantum capacitance that arises due to the smallness of the Debye screening length in the electrolyte.Comment: 7 pages, including 4 figures, submitted to Nanoscale Research Letters for a special issue related to the NGC 2009 conference (http://asdn.net/ngc2009/index.shtml

    Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: definition of genotypes and their characteristics.

    Get PDF
    Dobrava-Belgrade virus (DOBV) is a human pathogen that has evolved in, and is hosted by, mice of several species of the genus Apodemus. We propose a subdivision of the species Dobrava-Belgrade virus into four related genotypes – Dobrava, Kurkino, Saaremaa, and Sochi – that show characteristic differences in their phylogeny, specific host reservoirs, geographical distribution, and pathogenicity for humans

    Banning the bulb: institutional evolution and the phased ban of incandescent lighting in Germany

    Get PDF
    Much academic attention has been directed at analysing energy efficiency investments through the lens of ‘behavioural failure’. These studies have challenged the neoclassical framing of regulation which emphasises the efficiency benefits of price based policy, underpinned by the notion of rational individual self-mastery. The increasing use of a regulatory ban on electric lamps in many countries is one of the most recent and high profile flash points in this dialectic of ‘freedom-versus-the-state’ in the public policy discourse. This paper interrogates this debate through a study of electric lamp diffusion in Germany. It is argued that neoclassical theory and equilibrium analysis is inadequate as a tool for policy analysis as it takes the formation of market institutions, such as existing regulations, for granted. Further still, it may be prone to encourage idealistic debates around such grand narratives which may in practice simply serve those who benefit most from the status quo. Instead we argue for an evolutionary approach which we suggest offers a more pragmatic framing tool which focuses on the formation of market institutions in light of shifting social norms and political goals—in our case, progress towards energy efficiency and environmental goals

    Microbial interactions with phosphorus containing glasses representative of vitrified radioactive waste

    Get PDF
    The presence of phosphorus in borosilicate glass (at 0.1 – 1.3 mol% P2O5) and in iron-phosphate glass (at 53 mol% P2O5) stimulated the growth and metabolic activity of anaerobic bacteria in model systems. Dissolution of these phosphorus containing glasses was either inhibited or accelerated by microbial metabolic activity, depending on the solution chemistry and the glass composition. The breakdown of organic carbon to volatile fatty acids increased glass dissolution. The interaction of microbially reduced Fe(II) with phosphorus-containing glass under anoxic conditions decreased dissolution rates, whereas the interaction of Fe(III) with phosphorus-containing glass under oxic conditions increased glass dissolution. Phosphorus addition to borosilicate glasses did not significantly affect the microbial species present, however, the diversity of the microbial community was enhanced on the surface of the iron phosphate glass. Results demonstrate the potential for microbes to influence the geochemistry of radioactive waste disposal environments with implication for wasteform durability

    Forty years of durability assessment of nuclear waste glass by standard methods

    Get PDF
    Standard methods to assess the durability of vitrified radioactive waste were first developed in the 1980’s and, over the last 40 years, have evolved to yield a range of responses depending on experimental conditions and glass composition. Mechanistic understanding of glass dissolution has progressed in parallel, enhancing our interpretation of the data acquired. With the implementation of subsurface disposal for vitrified radioactive waste drawing closer, it is timely to review the available standard methodologies and reflect upon their relative advantages, limitations, and how the data obtained can be interpreted to support the post-closure safety case for radioactive waste disposal

    Measurement of the partial widths of the Z into up- and down-type quarks

    Full text link
    Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma decays were selected by tagging hadronic final states with isolated photon candidates in the electromagnetic calorimeter. Combining the measured rates of Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the simultaneous determination of the widths of the Z into up- and down-type quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18} MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.

    Search for R-Parity Violating Decays of Scalar Fermions at LEP

    Full text link
    A search for pair-produced scalar fermions under the assumption that R-parity is not conserved has been performed using data collected with the OPAL detector at LEP. The data samples analysed correspond to an integrated luminosity of about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle is expected to be unstable. Searches of R-parity violating decays of charged sleptons, sneutrinos and squarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield final states consisting of leptons, jets, or both with or without missing energy. No significant single-like excess of events has been observed with respect to the Standard Model expectations. Limits on the production cross- section of scalar fermions in R-parity violating scenarios are obtained. Constraints on the supersymmetric particle masses are also presented in an R-parity violating framework analogous to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.
    • 

    corecore