48 research outputs found

    Development of replication-defective herpes simplex viral vectors for delivery of RNA interference to neurons of the peripheral nervous system

    Get PDF
    Considerable interest has been focused on inducing RNA interference (RNAi) in neurons to study gene function and identify new targets for disease intervention. Although small interfering RNAs (siRNAs) have been used to silence genes in neurons, in vivo delivery of RNAi to the central and peripheral nervous system remains a major challenge limiting its applications. This thesis describes the development of a highly efficient method for in vivo gene silencing in dorsal root ganglia (DRG) using replication-defective herpes simplex viral (HSV-1) vectors by identifying and evaluating various approaches to induce RNAi, i.e. expression of individual short-hairpin RNAs (shRNAs), artificial microRNAs (miRNAs) and multiple tandem miRNAs. Following the development of these systems, HSV-mediated delivery of shRNA or miRNA against reporter genes was shown to result in highly effective and specific silencing in neuronal and non-neuronal cells in culture and in the DRG of mice in vivo, including in a transgenic mouse model. Proof of concept was established by demonstrating in vivo silencing of the endogenous trpv1 gene, thought to be involved in nociception, by assessing both mRNA and protein levels. These data are the first to show silencing in DRG neurons in vivo by vector-mediated delivery of shRNA and support the utility of HSV vectors for gene silencing in peripheral neurons and the potential application of this technology to the study of nociceptive processes and in pain gene target validation studies. Moreover, a disabled HSV-1 vector targeting p75, Lingo1 and NgR2, which are involved in myelin inhibition of axonal regeneration, was developed and evaluated for its ability to promote regeneration of sensory axons into the spinal cord, following injury of the dorsal roots. This is the first time such an appoach to silencing multiple genes has been employed. Although HSV-mediated delivery of multiple miRNAs resulted in highly effective silencing of these genes in dividing cells in culture, while highly effective silencing of p75 was achieved, only modest silencing of Lingo1 and NgR2 was observed in DRG neurons in vivo. Preliminary regeneration experiments, which were largely outside the scope of this thesis, were inconclusive and require more extensive study as a stand-alone project, if the in vivo potential of the approach developed for silencing multiple genes targeted at axonal regeneration is to be further explored

    Efficient delivery of RNA Interference to peripheral neurons in vivo using herpes simplex virus

    Get PDF
    Considerable interest has been focused on inducing RNA interference (RNAi) in neurons to study gene function and identify new targets for disease intervention. Although small interfering RNAs (siRNAs) have been used to silence genes in neurons, in vivo delivery of RNAi remains a major challenge limiting its applications. We have developed a highly efficient method for in vivo gene silencing in dorsal root ganglia (DRG) using replication-defective herpes simplex viral (HSV-1) vectors. HSV-mediated delivery of short-hairpin RNA (shRNA) targeting reporter genes resulted in highly effective and specific silencing in neuronal and non-neuronal cells in culture and in the DRG of mice in vivo including in a transgenic mouse model. We further establish proof of concept by demonstrating in vivo silencing of the endogenous trpv1 gene. These data are the first to show silencing in DRG neurons in vivo by vector-mediated delivery of shRNA. Our results support the utility of HSV vectors for gene silencing in peripheral neurons and the potential application of this technology to the study of nociceptive processes and in pain gene target validation studies

    Practical Application of Methanol-Mediated Mutualistic Symbiosis between Methylobacterium Species and a Roof Greening Moss, Racomitrium japonicum

    Get PDF
    Bryophytes, or mosses, are considered the most maintenance-free materials for roof greening. Racomitrium species are most often used due to their high tolerance to desiccation. Because they grow slowly, a technology for forcing their growth is desired. We succeeded in the efficient production of R. japonicum in liquid culture. The structure of the microbial community is crucial to stabilize the culture. A culture-independent technique revealed that the cultures contain methylotrophic bacteria. Using yeast cells that fluoresce in the presence of methanol, methanol emission from the moss was confirmed, suggesting that it is an important carbon and energy source for the bacteria. We isolated Methylobacterium species from the liquid culture and studied their characteristics. The isolates were able to strongly promote the growth of some mosses including R. japonicum and seed plants, but the plant-microbe combination was important, since growth promotion was not uniform across species. One of the isolates, strain 22A, was cultivated with R. japonicum in liquid culture and in a field experiment, resulting in strong growth promotion. Mutualistic symbiosis can thus be utilized for industrial moss production

    Genes That Influence Swarming Motility and Biofilm Formation in Variovorax paradoxus EPS

    Get PDF
    Variovorax paradoxus is an aerobic soil bacterium associated with important biodegradative processes in nature. We use V. paradoxus EPS to study multicellular behaviors on surfaces.We recovered flanking sequence from 123 clones in a Tn5 mutant library, with insertions in 29 different genes, selected based on observed surface behavior phenotypes. We identified three genes, Varpa_4665, Varpa_4680, and Varpa_5900, for further examination. These genes were cloned into pBBR1MCS2 and used to complement the insertion mutants. We also analyzed expression of Varpa_4680 and Varpa_5900 under different growth conditions by qPCR.The 29 genes we identified had diverse predicted functions, many in exopolysaccharide synthesis. Varpa_4680, the most commonly recovered insertion site, encodes a putative N-acetyl-L-fucosamine transferase similar to WbuB. Expression of this gene in trans complemented the mutant fully. Several unique insertions were identified in Varpa_5900, which is one of three predicted pilY1 homologs in the EPS genome. No insertions in the two other putative pilY1 homologs present in the genome were identified. Expression of Varpa_5900 altered the structure of the wild type swarm, as did disruption of the chromosomal gene. The swarming phenotype was complemented by expression of Varpa_5900 from a plasmid, but biofilm formation was not restored. Both Varpa_4680 and Varpa_5900 transcripts were downregulated in biofilms and upregulated during swarming when compared to log phase culture. We identified a putative two component system (Varpa_4664-4665) encoding a response regulator (shkR) and a sensor histidine kinase (shkS), respectively. Biofilm formation increased and swarming was strongly delayed in the Varpa_4665 (shkS) mutant. Complementation of shkS restored the biofilm phenotype but swarming was still delayed. Expression of shkR in trans suppressed biofilm formation in either genetic background, and partially restored swarming in the mutant.The data presented here point to complex regulation of these surface behaviors

    Methanotrophy, Methylotrophy, the Human Body and Disease

    Get PDF
    Methylotrophic Bacteria use one-carbon (C1) compounds as their carbon source. They have been known to be associated to the human body for almost 20 years as part of the normal flora and were identified as pathogens in the early 1990s in end-stage HIV patients and chemotherapy patients. In this chapter, I look at C1 compounds in the human body and exposure from the environment and then consider Methylobacterium spp. and Methylorubrum spp. in terms of infections, its role in breast and bowel cancers; Methylococcus capsulatus and its role in inflammatory bowel disease, and Brevibacterium casei and Hyphomicrobium sulfonivorans as part of the normal human flora. I also consider the abundance of methylotrophs from the Actinobacteria being identified in human studies and the potential bias of the ionic strength of culture media and the needs for future work. Within the scope of future work, I consider the need for the urgent assessment of the pathogenic, oncogenic, mutagenic and teratogenic potential of Methylobacterium spp. and Methylorubrum spp. and the need to handle them at higher containment levels until more data are available

    Impact of plants on the diversity and activity of methylotrophs in soil

    Get PDF
    Background Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. Results Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using 13C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the 13C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a 13CO2 atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. Conclusion In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle

    Variation in the provision and practice of implant-based breast reconstruction in the UK: Results from the iBRA national practice questionnaire

    Get PDF
    Introduction The introduction of biological and synthetic meshes has revolutionised the practice of implant-based breast reconstruction (IBBR) but evidence for effectiveness is lacking. The iBRA (implant Breast Reconstruction evAluation) study is a national trainee-led project that aims to explore the practice and outcomes of IBBR to inform the design of a future trial. We report the results of the iBRA National Practice Questionnaire (NPQ) which aimed to comprehensively describe the provision and practice of IBBR across the UK. Methods A questionnaire investigating local practice and service provision of IBBR developed by the iBRA Steering Group was completed by trainee and consultant leads at breast and plastic surgical units across the UK. Summary data for each survey item were calculated and variation between centres and overall provision of care examined. Results 81 units within 79 NHS-hospitals completed the questionnaire. Units offered a range of reconstructive techniques, with IBBR accounting for 70% (IQR:50–80%) of participating units' immediate procedures. Units on average were staffed by 2.5 breast surgeons (IQR:2.0–3.0) and 2.0 plastic surgeons (IQR:1.0–3.0) performing 35 IBBR cases per year (IQR:20-50). Variation was demonstrated in the provision of novel different techniques for IBBR especially the use of biological (n = 62) and synthetic (n = 25) meshes and in patient selection for these procedures. Conclusions The iBRA-NPQ has demonstrated marked variation in the provision and practice of IBBR in the UK. The prospective audit phase of the iBRA study will determine the safety and effectiveness of different approaches to IBBR and allow evidence-based best practice to be explored
    corecore