272 research outputs found

    An Economic Study of the Effect of Android Platform Fragmentation on Security Updates

    Full text link
    Vendors in the Android ecosystem typically customize their devices by modifying Android Open Source Project (AOSP) code, adding in-house developed proprietary software, and pre-installing third-party applications. However, research has documented how various security problems are associated with this customization process. We develop a model of the Android ecosystem utilizing the concepts of game theory and product differentiation to capture the competition involving two vendors customizing the AOSP platform. We show how the vendors are incentivized to differentiate their products from AOSP and from each other, and how prices are shaped through this differentiation process. We also consider two types of consumers: security-conscious consumers who understand and care about security, and na\"ive consumers who lack the ability to correctly evaluate security properties of vendor-supplied Android products or simply ignore security. It is evident that vendors shirk on security investments in the latter case. Regulators such as the U.S. Federal Trade Commission have sanctioned Android vendors for underinvestment in security, but the exact effects of these sanctions are difficult to disentangle with empirical data. Here, we model the impact of a regulator-imposed fine that incentivizes vendors to match a minimum security standard. Interestingly, we show how product prices will decrease for the same cost of customization in the presence of a fine, or a higher level of regulator-imposed minimum security.Comment: 22nd International Conference on Financial Cryptography and Data Security (FC 2018

    The alternating least-squares algorithm for CDPCA

    Get PDF
    Clustering and Disjoint Principal Component Analysis (CDP CA) is a constrained principal component analysis recently proposed for clustering of objects and partitioning of variables, simultaneously, which we have implemented in R language. In this paper, we deal in detail with the alternating least-squares algorithm for CDPCA and highlight its algebraic features for constructing both interpretable principal components and clusters of objects. Two applications are given to illustrate the capabilities of this new methodology

    Implied volatility of basket options at extreme strikes

    Full text link
    In the paper, we characterize the asymptotic behavior of the implied volatility of a basket call option at large and small strikes in a variety of settings with increasing generality. First, we obtain an asymptotic formula with an error bound for the left wing of the implied volatility, under the assumption that the dynamics of asset prices are described by the multidimensional Black-Scholes model. Next, we find the leading term of asymptotics of the implied volatility in the case where the asset prices follow the multidimensional Black-Scholes model with time change by an independent increasing stochastic process. Finally, we deal with a general situation in which the dependence between the assets is described by a given copula function. In this setting, we obtain a model-free tail-wing formula that links the implied volatility to a special characteristic of the copula called the weak lower tail dependence function

    Entry and fiscal policy effectiveness in a small open economy within a Monetary Union

    Get PDF
    In this article I develop an imperfectly competitive dynamic general equilibrium model for a small open economy integrated in a monetary union. Here, the type of entry in the non-traded goods’ sector affects fiscal policy effectiveness. Fiscal policy effectiveness is enlarged when aggregate demand stimuli increase intra-industrial competition (case I). This is due to the counter-cyclical mark-up mechanism generated by entry. Such a mechanism is absent in the usual monopolistic competition where entry only has a sharing effect (case II).info:eu-repo/semantics/publishedVersio

    A generalized Tullock contest

    Get PDF
    We construct a generalized Tullock contest under complete information where contingent upon winning or losing, the payoff of a player is a linear function of prizes, own effort, and the effort of the rival. This structure nests a number of existing contests in the literature and can be used to analyze new types of contests. We characterize the unique symmetric equilibrium and show that small parameter modifications may lead to substantially different types of contests and hence different equilibrium effort levels

    Inference algorithms for gene networks: a statistical mechanics analysis

    Full text link
    The inference of gene regulatory networks from high throughput gene expression data is one of the major challenges in systems biology. This paper aims at analysing and comparing two different algorithmic approaches. The first approach uses pairwise correlations between regulated and regulating genes; the second one uses message-passing techniques for inferring activating and inhibiting regulatory interactions. The performance of these two algorithms can be analysed theoretically on well-defined test sets, using tools from the statistical physics of disordered systems like the replica method. We find that the second algorithm outperforms the first one since it takes into account collective effects of multiple regulators

    Relaxed 2-D Principal Component Analysis by LpL_p Norm for Face Recognition

    Full text link
    A relaxed two dimensional principal component analysis (R2DPCA) approach is proposed for face recognition. Different to the 2DPCA, 2DPCA-L1L_1 and G2DPCA, the R2DPCA utilizes the label information (if known) of training samples to calculate a relaxation vector and presents a weight to each subset of training data. A new relaxed scatter matrix is defined and the computed projection axes are able to increase the accuracy of face recognition. The optimal LpL_p-norms are selected in a reasonable range. Numerical experiments on practical face databased indicate that the R2DPCA has high generalization ability and can achieve a higher recognition rate than state-of-the-art methods.Comment: 19 pages, 11 figure

    Learning a Factor Model via Regularized PCA

    Full text link
    We consider the problem of learning a linear factor model. We propose a regularized form of principal component analysis (PCA) and demonstrate through experiments with synthetic and real data the superiority of resulting estimates to those produced by pre-existing factor analysis approaches. We also establish theoretical results that explain how our algorithm corrects the biases induced by conventional approaches. An important feature of our algorithm is that its computational requirements are similar to those of PCA, which enjoys wide use in large part due to its efficiency
    • …
    corecore