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Abstract. Forward Selection Component Analysis (FSCA) provides a
pragmatic solution to the NP-hard unsupervised variable selection prob-
lem, but is not guaranteed to be optimal due to the multi-modal nature
of the mean squared error (MSE) selection metric used. Frame poten-
tial (FP) is a metric that has recently been shown to yield near-optimal
greedy sensor selection performance for linear inverse problems. This pa-
per explores if FP offers similar benefits in the unsupervised variable
selection context. In addition, the backward elimination counterpart of
FSCA is introduced for the first time (BECA) and compared with for-
ward and backward FP based variable selection on a number of simu-
lated and real world datasets. It is concluded that FP does not improve
on FSCA and that while BECA yields comparable results to FSCA it
is not a competitive alternative due to its much higher computational
complexity.

Keywords: Unsupervised dimensionality reduction, variable selection,
frame potential, greedy algorithm

1 Introduction

Principal Component Analysis (PCA) is a powerful technique for unsupervised
dimensionality reduction, but as the resulting reduced representation is a linear
combination of all variables, it is not, in general, straightforward to use it to iden-
tify a subset of key variables [2]. This is especially true if there is a high level of
correlation among candidate variables. Various enhancements to PCA have been
developed, such as SCoTLASS [4], DSPCA [5], sparse PCA [6]. These attempt
to constrain PCA to produce sparse solutions, but are generally computationally
intensive and do not necessarily yield good variable selection.

Directly solving the unsupervised variable selection problem is an NP-hard
combinatorial optimization problem, and quickly becomes intractable as the
number of candidate variables increases. Therefore, sub-optimal approaches which
approximately solve the problem are generally employed. These fall into three
categories: convex optimization relaxations of the cardinality constraint such as
[7], heuristic approaches such as the aforementioned PCA enhancements, and
greedy search methods such as Forward Selection Component Analysis (FSCA)
[3].
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Mathematically the unsupervised variable selection problem can be stated as
follows. Given a dataset X ∈ IRm×v with m measurements of v variables, and
an index set N = {1, 2, ..., v} of the columns of X we wish to find the subset S
of length k of the columns of X that best approximates X according to some
metric, G(S), that is:

S∗ = arg min
S⊂N ,|S|=k

G(S) (1)

In algorithms such as FSCA and sparse PCA G(S) is the reconstruction error
of the optimum linear reconstruction of X(= X([N ]) by X([S]), that is

G(S) =
1

mv
||X − X̂([S])||2F (2)

where X̂([S]) = X([S])X([S])†X. Here, for a generic matrix M , the notation
M † signifies the Moore-Penrose pseudoinverse of M , M([R]) is a matrix con-
taining only the columns of M specified by index set R, and ||M ||F is the
Frobenius norm of M . Essentially (2) is the mean squared error (MSE) of the
approximation, or equivalently a proxy for the variance explained metric VX(S)
if the columns of X are mean-centred, that is:

VX(S) = 100 ·
(

1−mv G(S)

||X||2F

)
(3)

Hence, minimizing G(S) is equivalent to maximizing the variance explained.
Recently a metric referred to as the frame potential (FP) has been shown

to guarantee near-optimal sensor selection solutions in terms of MSE for linear
inverse problems when using a greedy selection algorithm [8]. The frame potential
of a matrix X is defined as

FP (X) =

v∑
i,j=1

|〈xi,xj〉|2 =

m∑
i,j=1

|〈−→xi,
−→xj〉|2 (4)

where xi and −→xi are the i-th column and i-th row of X, respectively [12], and
minimizing it encourages orthogonality among the selected variables. Its attrac-
tiveness with regard to greedy selection algorithms arises from the submodularity
property [8], [9], [10], which is defined as follows.

Definition 1. (Submodular function [8]) Given three sets X , Y and N such
that X ⊂ Y ⊂ N and given an element i ∈ N \Y, a function G is submodular if
it satisfies G(X ∪ i)−G(X ) ≥ G(Y ∪ i)−G(Y).

The significance of this property is that in the field of combinatorial optimization
it has been proven that greedy maximization of normalised, monotone, submod-
ular functions is near-optimal in the sense of being bounded to be within a factor
(1− e−1) of the global maximum [11], that is:

G(Sgreedy) ≥ (1− e−1)G(Sopt) (5)

2
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where Sopt = arg max
S⊂N ,|S|=k

G(S). Ranieri et al. [8] showed that the FP based cost

function

F (Q) = FP (X)− FP (X([N\Q])) (6)

is a normalized, monotone and submodular function with respect toQ, and hence
satisfies the optimality bound requirements. Maximizing F (Q) is equivalent to
minimizing FP (S), where S = N\Q.

The sensor selection problem considered by Ranieri et al. [8] can be expressed
as f = Xα, where f ∈ IRm×1 is the measured physical field, α ∈ IRv×1 are the
parameters to be estimated and X ∈ IRm×v is a known linear model. Then,
given a limited number of sensor locations r < m corresponding to the rows

specified in the index set
−→
S , and denoting X([(

−→
S )]) as the matrix containing

the rows of X indexed by
−→
S , solving the sensor placement problem equates to

minimizing

G(
−→
S ) = MSE(α̂(

−→
S )) = ||α̂(

−→
S )−α||22 (7)

with respect to
−→
S , subject to |

−→
S | = r, where α̂(

−→
S ) = X([(

−→
S )])†f([

−→
S ]).

Ranieri et al. [8] showed that by employing a backward elimination greedy
search algorithm to maximize (6) near optimal MSE performance can be ob-
tained. It should be noted that a near-optimal solution in terms of FP does
not guarantee near-optimality with regards to the MSE. In the case of the sen-
sor selection inverse problem considered in [8], the authors show that a strong
link exists between the MSE of the model parameters being estimates (α) and
FP, with the result that a near-optimal solution is guaranteed for that specific
problem formulation. However, for the general unsupervised variable selection
problem, where the focus is on the MSE of the reconstruction of X, and not the
MSE of the model parameters, such links are not readily established and hence
MSE performance is not guaranteed. Nevertheless, it is interesting to explore
if optimizing with respect to FP with its orthogonality encouraging property
provides performance benefits over FSCA, which is a greedy forward selection
algorithm that directly optimizes with respect to the reconstruction MSE. As
such, this paper presents an empirical investigation of the performance of FP ver-
sus reconstruction MSE as a variable selection metric for unsupervised variable
selection problems. The standard FSCA algorithm performs variable selection
using forward selection, while the FP algorithm in [8] uses backward elimination.
Therefore, to enable a fair comparison, forward and backward versions of each
algorithm are considered. These are denoted FSCA, BECA, FSFP and BEFP.

The remainder of the paper is organized as follows: Section 2 introduces the
greedy selection algorithms under investigation. Section 3 presents the results of
two simulated experiments, while Sect. 4 presents the results for two real world
cases. Finally, conclusions are provided in Sect. 5. The nomenclature used is as
follows: matrices are denoted by bold capital letters, vectors are denoted by bold
lowercase letters, X0 and Xu are the data matrix variants of X with zero mean
columns and one norm columns, respectively.

3
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2 Algorithms

The four greedy unsupervised variable selection algorithms investigated are:

1. Forward Selection Component Analysis (FSCA): The implementation used
here is equivalent to, but less computationally efficient that the algorithms
presented in [3], and is used to allow direct comparison with the FP selection
criteria.

2. Backward Elimination Component Analysis (BECA): This implements the
classic backward elimination algorithm, where all variables are initially se-
lected and then the least important variables are successively eliminated
using the change in reconstruction MSE as the selection metric.

3. Forward Selection Frame Potential (FSFP): This implements the forward
selection approach using F (Q) in (6) as the selection metric.

4. Backward Elimination Frame Potential (BEFP): This uses the backward
elimination approach of BECA but with MSE replaced by F (Q) as the se-
lection metric.

The pseudo-code for the forward selection and backward elimination algorithms
is presented in General algorithm 1 and General algorithm 2, respectively, where
the Selector flag allows selection of the specific algorithm of interest. Note that
the FP algorithms use Xu instead of X, as recommended in [8], as this has been
found to improve selection performance.

General algorithm 1 Forward greedy variable selection

Input: X, k, Selector
Output: s

Initialisation: s = [ ],a = [1, 2, 3, ..., v]
for j = 1 to k do

switch Selector do
case FSCA

(a) Θ̂(ai) = X0([s, ai])
†X0

(b) X̂0(ai) = X0([s, ai])Θ̂(ai)
(c) ai∗ = arg min

ai

||X0 − X̂0(ai)||2F

case FSFP
(a) ai∗ = arg max

ai

{FP (Xu)− FP (Xu([s, ai]))}

end switch
s = [s, ai∗ ],a = a\ai∗

end for

In all experiments conducted, algorithm performance is evaluated using the
percentage of dataset variance explained by reconstruction using the selected
variables, as defined in (3) (with X = X0).

4
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General algorithm 2 Backward greedy variable elimination

Input: X, k, Selector
Output: s

Initialisation: s = [ ],a = [1, 2, 3, ..., v]
for j = 1 to (v − k) do

switch Selector do
case BECA

(a) Θ̂(ai) = X0([a\ai])†X0

(b) X̂0(ai) = X0([a\ai])Θ̂(ai)
(c) ai∗ = arg min

ai

||X0 − X̂0(ai)||2F

case BEFP
(a) ai∗ = arg max

ai

{FP (Xu)− FP (Xu([a\ai]))}

end switch
a = a\ai∗

end for
s = a

3 Simulated Case Studies

This section presents results comparing FSCA, BECA, FSFP and BEFP on
two simulated case studies introduced in [3]. Since PCA provides an upper
bound on the achievable variance explained by variable selection algorithms for
a fixed number of components [3], the algorithms are also benchmarked against
PCA. Following [1], the performance comparison focuses on variable selection to
achieve 99% variance explained. The number of variables/components needed to
achieve 99% variance explained is denoted as k99%.

3.1 Simulated Dataset 1: Four Distinct Variables

The generation of this dataset begins by defining four base variables w0, x0,
y0, z0 ∼ N(0, 1), 20 noise variables ε1, . . . , ε20 ∼ N(0, 0.1) and two larger
noise variables ε21, ε22 ∼ N(0, 0.4). These are then used to define the dataset
X = [w0, . . . ,w5,x0, . . . ,x5,y0, . . . ,y5, z0, . . . ,z5,h1,h2] ∈ IRn×26, where the
columns ofX are n realizations of the variables {wi = w0+εi}i=1,...,5, {xi = x0+
εi+5}i=1,...,5, {yi = y0+εi+10}i=1,...,5, {zi = z0+εi+15}i=1,...,5, h1 = w0+x0+ε21
and h2 = y0 + z0 + ε22. Hence, the dataset is highly redundant with just 4 in-
dependent variables. The algorithms have been evaluated over 200 realizations
of X with n = 1000. The results reported are the average performance over the
200 realizations.

Figure 1(a) shows the percentage variance explained (VX) with respect to
the variance explained by PCA (VPCA) as a function of k. Among the four
algorithms, only FSCA shows a significantly different trend, rapidly achieving
95%, but then showing no improvement until k = 5. With reference to the k99%
results in Table 1, FSCA performs best, followed by BECA and FSFP. BEFP is
inferior to the other algorithms requiring 21 variables to achieve the 99% target.

5
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3.2 Simulated dataset 2: Block Redundancy

This dataset is defined as follows: X = [X0,X1] ∈ IRm×v, where X0 ∈ IRm×u

with X0
i,j ∼ N(0, 1), X1 = X0 · Φ + E, Φ ∈ IRu×(v−u) with Φi,j ∼ N(0, 1)

and E ∈ IRm×(v−u) with Ei,j ∼ N(0, 0.1). Hence, this dataset contains u ≤ v
independent variables. Three different (u, v) combinations are considered: (10,
30), (15, 50) and (20, 75). Results are presented in each case for the average of
200 realizations of X with m = 1000.

Figure 1(b) shows the performance of each algorithm relative to PCA for
different values of k when u = 10. As can be seen, FSCA yields the best results
followed closely by BECA. Both FP algorithms perform poorly for this problem
when k < 10, with the forward implementation superior to the backward imple-
mentation. As k increases the differences between the algorithms decrease, and
they all converge at k = 10. Table 2 shows the k99% results and the correspond-
ing VX in parentheses for the different (u, v) combinations. All algorithms need
u variables to achieve the 99% threshold. The difference between the worst and
the best is less than 0.2%. To demonstrate the robustness of the results, box
plots showing the distribution of the variance explained by each algorithm over
the 200 realizations are presented in Fig. 2 for the case u = 10, for k = 5 and
k = 10.

1 2 3 4 5 6

Number of components out of 26

80

85

90

95

100

1
0

0
 

 (
V

X
 /

 V
P

C
A
)

FSCA

BECA

FSFP

BEFP

(a) Simulated dataset 1

1 2 3 4 5 6 7 8 9 10

Number of components out of 30

20

40

60

80

100

1
0

0
 

 (
V

X
 /

 V
P

C
A
)

FSCA

BECA

FSFP

BEFP

(b) Simulated dataset 2

Fig. 1: Percentage explained variance with respect to VPCA for different values
of k for: (a) Simulated dataset 1 and; (b) Simulated dataset 2 for u = 10.

Table 1: (Simulated dataset 1) Values of k99% achieved and the corresponding
VX . In bold the winner algorithm after PCA.

PCA FSCA BECA FSFP BEFP

k99% 5 6 8 8 21
VX 99.01 99.30 99.07 99.06 99.14
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Table 2: (Simulated dataset 2) Values of k99% achieved and, between brackets,
the corresponding VX .

u v PCA FSCA BECA FSFP BEFP

10 30 10(99.95) 10(99.72) 10(99.86) 10(99.75) 10(99.89)
15 50 15(99.96) 15(99.76) 15(99.89) 15(99.69) 15(99.93)
20 75 20(99.97) 20(99.77) 20(99.90) 20(99.68) 20(99.95)

4 Real World Case Studies

In this section the algorithms are compared on two different real world datasets:
wafer metrology data from a semiconductor manufacturing process and gas sen-
sor array data collected from a gas delivery system.

4.1 Real Dataset 1: Wafer Site Optimization

This dataset, which is described in detail in [1], consists of wafer metrology data
from a semiconductor manufacturing process for a set of 316 wafers. The goal
is to improve the efficiency of wafer profile monitoring by reducing the number
of measured sites from a candidate set of 50 sites, without discarding valuable
information. This can be cast as a variable selection problem, with the columns
of the data matrix representing the candidate sites and the rows representing
the measurements from individual wafers, hence X ∈ IR316×50. The goal is to
select the number of sites needed to achieve 99% variance explained. The results
of the analysis of this dataset are presented in Fig. 3(a) and in Tables 3 and 4.

Figure 3(a) and Table 3 show that the MSE-based algorithms (FSCA and
BECA) substantially outperform the FP-based algorithms for this problem achiev-
ing consistently higher explained variance for a given number of selected vari-
ables. FSCA yields the best performance for low values of k while BECA is
marginally superior at higher values. Both algorithms identify 7 sites as neces-
sary to achieve 99% variance explained. In contrast, the best FP-based result is
10 sites.

As described in [1], the unmeasured sites can be estimated from the measured
sites using a linear model with the selected sites as regressors. Table 4 provides
a comparison of the performance of the seven sites selected by FSCA and BECA
with regard to their ability to predict the 43 unmeasured sites on each wafer.
Performance is expressed in terms of the mean, standard deviation and minimum
variance explained over the 43 unmeasured sites. As can be seen, BECA selects
completely different sites to FSCA, and in this instance produces significantly
better results.

7
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4.2 Real Dataset 2: Gas Sensor Array Analysis

This dataset was selected from the UCI Machine Learning Repository [13], [14]
and consists of measurements from 16 chemical sensors exposed to 6 gases at
different concentration levels gathered in a gas delivery platform facility at the
BioCircuits Institute, University of California, San Diego. From each sensor, 8
features have been extracted giving a total of 128 variables plus the concentration
of the analyte gas. Here, only the data from batch 3 is considered giving a dataset
X ∈ IR1586×129 for analysis. Due to the large variation in the magnitude of the
variables in the dataset, all variables were standardized prior to analysis. Results
are presented in Fig. 3(b) and Table 5 for the standardized dataset.

Here again, the MSE-based algorithms outperform FP, particularly for lower
numbers of selected variables. In addition, to achieve 99% variance explained
FSFP and BEFP need 17 variables while FSCA and BECA achieve the same
performance with only 12 variables.

Table 3: (Real dataset 1) Values of k99% achieved and the corresponding VX .

PCA FSCA BECA FSFP BEFP

k99% 5 7 7 10 11
VX 99.07 99.02 99.17 99.24 99.17

Table 4: (Real dataset 1) Mean, minimum and standard deviation of VX for the
unmeasured sites using the sites selected by FSCA and BECA as regressors.

Best 7 sites Mean VX Min VX σ

FSCA 45, 27, 1, 24, 9, 49, 14 98.74 93.74 1.34
BECA 4, 15, 16, 31, 42, 44, 48 99.06 96.70 0.86

PCA FSCA BECA FSFP BEFP
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Fig. 2: (Simulated dataset 2) Boxplot of VX by each algorithm for the case u = 10
with k = 5 (left) and k = 10 (right).
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Fig. 3: Percentage explained variance with respect to VPCA for different values
of k for: (a) Real dataset 1 (left) and; (b) Real dataset 2 (right).

Table 5: (Real dataset 2) Values of k99% achieved and the corresponding VX .

PCA FSCA BECA FSFP BEFP

k99% 8 12 12 17 17
VX 99.00 99.05 99.07 99.02 99.01

5 Conclusions

Motivated by its effectiveness in a recently reported optimum sensor placement
application, this paper has explored the value of FP as an alternative to MSE
as a selection metric in unsupervised variable selection problems. Both forward
selection and backward elimination greedy selection algorithms have been con-
sidered. The results of two simulated and two real case studies show that, in
general, for a fixed number of selected variables, selection based on MSE signif-
icantly outperforms FP, and therefore FP is not a good choice for this type of
problem. An explanation for this is that while greedy FP-based algorithms enjoy
guarantees on near-optimal solutions in terms of FP this does not automatically
extend to guarantees on MSE performance. In general FSCA outperforms BECA
when the number of variables selected is low, but BECA has comparable and
sometimes marginally better performance when approaching 99% variance ex-
plained. However, FSCA has the advantage of being computationally much more
efficient, and therefore is the preferred algorithm.
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