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Abstract

Clustering and Disjoint Principal Component Analysis (CDPCA) is a constrained
principal component analysis recently proposed for clustering of objects and partition-
ing of variables, simultaneously, which we have implemented in R language. In this
paper, we deal in detail with the alternating least-squares algorithm for CDPCA and
highlight its algebraic features for constructing both interpretable principal compo-
nents and clusters of objects. Two applications are given to illustrate the capabilities
of this new methodology.
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1 Introduction

Principal Component Analysis (PCA) is a widely used tool in applied statistics for ex-
ploratory data analysis and dimensionality reduction. It has many important applications
in different fields, such as neuroscience, computer graphics, image compression, meteorol-
ogy, oceanography, and in gene expression [2].

In essence, PCA allows the reduction of the dimensionality of data by the detection
of a lower number of uncorrelated variables, called components, that are able to explain
the maximum variability of the data, i.e., the data compression is done with minimum
information loss. An orthogonal transformation projects the data into a lower dimensional
space along the directions where the data presents the highest variability. This statistical
technique is useful to represent data by drawing a low-dimensional graph (e.g., in biplots)
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in order to find patterns hidden on data and to interpret relationships between samples
and variables. PCA can be performed via singular value decomposition of the data matrix.

Since each principal component (PC) is a linear combination of all the original vari-
ables, i.e., with nonzero loadings, this can be considered a tremendous shortcoming for
component interpretation. To overcome this difficulty, various PCA-based methodologies
have been proposed in the recent years, for instance, based on rotation techniques or ob-
taining components with zero loadings. In this latter context, several major papers have
been published. In [9], it is proposed a new methodology called Simple Principal Compo-
nent Analysis, which idea is to restrict the components’ loadings to be equal to -1, 0 or 1.
In 2003, Jolliffe, Trendafinov and Uddin [3] introduced SCoTLASS, which is a maximal
variance approach that obtains components where a bound is introduced on the sum of
the absolute values of the loadings, and some become zero. Later, in 2006, Zou, Hastie and
Tibshirani [11] introduced the Sparse Principal Component Analysis, which aims to obtain
modified principal components with sparse loadings. In [11], it is also proposed efficient
algorithms to perform the new sparse PCA and some numerical experiments with real and
simulated data are reported. In 2007, a new approach for sparse PCA via Semidefinite
Programming was proposed in [1], based on a convex semidefinite relaxation of the sparse
PCA problem. There are also reported numerical experiments for comparing that tech-
nique with others. More recently, in 2013, it is proposed in [4] a new sparse PCA and an
iterative thresholding algorithm to estimate principal subspaces.

When dealing with real data sets, there may be the need of reducing not only the
dimension of the variable space, but also to reveal some patterns among the objects.
Obviously, this can be done by performing PCA on the variables and applying a clustering
technique on the objects. The desirable scenario for data visualization and interpretation
is to obtain non overlapping clusters of objects and disjoint or sparse principal components.

A new methodology called Clustering and Disjoint Principal Component Analysis (re-
ferred to hereafter as CDPCA) [8] was recently proposed for clustering of objects and
partitioning of variables, simultaneously. It permits to cluster objects along a set of cen-
troids and partition the variables into a reduced set of components, simultaneously, in
order to maximize the between cluster deviance of the components in the reduced space.
The CDPCA classification of data consists of the construction of groups based on the
closeness and similarity among data.

In [8], the proposed CDPCA model is described as a joint model of K-means applied on
the data matrix and PCA applied on the matrix of centroids. Hence, it depends on three
parameter matrices: one matrix for allocating the objects into the clusters, one other for
identifying the centroids and another one for identifying to the loading components. The
least-squares estimators of these parameters can be obtained by solving a quadratic mixed
continuous and integer optimization problem [8]. An alternating least-squares (ALS) al-
gorithm based on four steps is suggested in [8] to solve the problem. Notice that the
ALS algorithm can be considered as an heuristic that iteratively solves the optimization
problem based on two basic steps: allocation of objects via K-means ([10]) and reduction
of the variable space via application of PCA on the resulting centroids. In this paper,
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we describe a detailed two-step-based scheme of the ALS algorithm proposed in [8] for
estimating the parameters of the CDPCA model. Unlike PCA, in CDPCA disjoint com-
ponents are returned, and thus, each original variable contributes to a single component.
It is worth mentioning that the obtained CDPCA score components may be correlated,
unlike in PCA where uncorrelated components are provided.

Recently, we have implemented the CDPCA in a easy-to-use software application [5]
using R language [6], which is available from the authors upon request. Beside returning
an assignment matrix for the allocation of objects into clusters and a component loading
matrix which allows to allocate the variables into disjoint subsets, the main features of our
R-based implementation of CDPCA include a plot of the data projected into the two di-
mensional space defined by the first two CDPCA components, and also a pseudo-confusion
matrix when the real classification is known, permitting to summarize and visualize the
(mis)classification of the objects. The goal of this paper is to explain and illustrate the
algebraic features of the two essential steps in each iteration of the ALS algorithm. A
toy example is included to show some transformations performed in each step of the ALS
algorithm. Additionally, a numerical experiment using real data is presented. To execute
these analyses we use our R-implemented function of CDPCA. Since the goal of this work
is not focused on our R-based implementation, only brief reference to this function will be
given in the numerical example.

The paper is organized as follows. Section 2 presents the theoretical background and
tools needed for the CDPCA technique. Section 3 is devoted to highlight the algebraic
features behind the CDPCA detailing the ALS algorithm step by step. In Section 4,
application of CDPCA using data from a breast cancer study is presented and the results
are compared with those obtained using PCA. Concluding remarks appear in Section 5.

2 The methodology of CDPCA

In this section we describe the CDPCA, based on the paper [8].

2.1 Notation

First of all, let us introduce some notations and basic definitions that will be used through-
out this work.

X = (xij) : Data matrix with I objects in rows and J variables in columns; X is assumed
to be standardized.

P , Q: Desired number of clusters of objects and subsets of variables, respectively.

U = (uip) : Matrix defining an allocation of the I objects into P clusters; U is a I × P
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binary and row stochastic matrix defined as
uip = 1, if the i-th object belongs to the cluster p,

uip = 0, otherwise.

V = (vjq) : Matrix defining a partition of the J variables into Q subsets; V is a J × Q
binary and row stochastic matrix defined as

vjq = 1, if the j-th variable belongs to the subset q,

vjq = 0, otherwise.

X̄ : Object centroid matrix in the original space; X̄ is a P × J matrix defined by X̄ =(
UTU

)−1
UTX.

Z = (zij) : Centroid-based data matrix where each object is identified by the correspond-
ing centroid, i.e., each object is projected into the space defined by the P clusters;
Z is a I × J matrix given by Z = UX̄.

W(q) =
(
w

(q)
ik

)
: Submatrix extracted from the centroid-based data matrix Z where only

the original variables assigned into the q-th column of V are considered; W(q) is a
I ×K(q) matrix defined as

w
(q)
ik = zij , if vjq = 1, with k = rankJ(q)(j),

where J (q) = {j : vjq = 1}, K(q) = #J (q) and k = 1, · · · ,K(q).

A = (ajq) : Matrix of the component loadings; A is a J ×Q matrix where the Q columns
are identifying the coefficients of Q linear combinations (i.e., the Q principal com-

ponents for CDPCA) such that rank(A) = Q, ATA = IQ and
J∑

j=1
(ajqajr)

2 = 0, for

any q and r (q 6= r).

Y = (yiq) : Component score matrix where yiq is the value of the i-th object for the q-th
CDPCA component; Y is a I ×Q matrix given by Y = XA.

Ȳ : Object centroid matrix in the reduced space; Ȳ is a P×Q matrix defined by Ȳ = X̄A.

2.2 Model

The CDPCA model results from the application of PCA on the transformed data matrix,
where each object is replaced by its centroid. By its turn, the centroids are obtained by
applying the K-means algorithm on the original data matrix ([8]).
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Hence, the data matrix would be fitted by the model

X = UX̄ + E1 (K-means applied on X)

= UȲAT + E1 + E2 (PCA applied on UX̄)

= UȲAT + E (CDPCA model) (1)

where E, E1, E2 are I × J error matrices with E = E1 + E2.

2.3 Optimization problem

From the CDPCA model (1), it is easy to see that E = X − UȲAT . Therefore, the
CDPCA problem intents to minimize the norm of the error matrix E, resulting in the
following optimization problem

min
U,Ȳ,A

‖X−UȲAT ‖2, (2)

subject to the above conditions for the matrices U (i.e., U is a binary and row stochastic
matrix), Ȳ (i.e., Ȳ is an object centroid matrix in the reduced space) and A (i.e., A is a
columnwise orthonormal matrix where each row contributes to a single column).

It can be proved that the problem (2) is equivalent to the maximization of the between
cluster deviance ‖UX̄A‖2 of the components in the reduced space, subject to constraints
on the matrices U and A. Since the decomposition ‖X−UȲAT ‖2 = ‖X‖2 − ‖UȲAT ‖2
holds ([8]), the above problem (2) is equivalent to

max
U,Ȳ,A

‖UȲAT ‖2, (3)

subject to the same constraints of problem (2). Since Ȳ = X̄A and A has orthonormal
columns (i.e., ATA = I), then ‖UȲAT ‖2 = ‖UX̄A‖2. Hence, problem (3) is equivalent
to

max
U,X̄,A

‖UX̄A‖2. (4)

To solve this optimization problem, the authors of CDPCA proposed the inclusion of
the matrix V described in Section 2.1 which specifies the partition of J variables into Q
disjoint components. The positions of the nonzero elements of the matrix A are identified
by the positions of the one’s in the matrix V. Hence, and since Ȳ = X̄A, the CD-
PCA problem can be formulated as the following quadratic mixed continuous and integer
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problem:
max F = ‖UȲ‖2
s. t. uip ∈ {0, 1} , i = 1, ..., I; p = 1, ..., P

P∑
p=1

uip = 1, i = 1, ..., I

vjq ∈ {0, 1} , j = 1, ..., J ; q = 1, ..., Q
Q∑

q=1
vjq = 1, j = 1, ..., J

J∑
j=1

a2
jq = 1, q = 1, ..., Q

J∑
j=1

ajqajr = 0, q = 1, ..., Q− 1; r = q + 1, ..., Q

(5)

The first two constraints in (5) correspond to the allocation of I objects into P clus-
ters. The following two constraints represent the allocation of J variables into Q disjoint
subsets of variables (components). The remaining constraints are associated to the PCA
implementation. The objective function value is calculated by ‖UȲ‖2 = tr

(
UȲ(UȲ)T

)
,

corresponding to the between cluster distances. Based on linear algebra properties, the
objective function value F can also be equivalently computed by tr

(
(UȲ)TUȲ

)
, repre-

senting the total variance of the data in the reduced space, where the objects are identified
by their centroids. The main goal is the achievement of maximum dissimilarity or distance
between centroids (and objects) of different clusters. The idea of CDPCA is finding a clus-
tering of objects along a set of centroids and, simultaneously, a partition of variables along
a reduced set of disjoint components, in order to maximize the between cluster deviance
in the reduced space of the disjoint components.

2.4 Algorithm

In [8], it is proposed an iterative algorithm called alternating least-squares algorithm
(ALS) to solve the optimization problem (5). Each iteration of the ALS algorithm can be
summarily described by two basic steps: allocation of objects via K-means and reduction
of the variable space via application of PCA on the resulting centroids. Concretely,

• Step 1: Concerning to the objects:

allocate the I objects into P clusters (matrix U),

calculate the centroids in the space of the observed variables (matrix X̄)

identify the objects by its cluster centroids in the space of the observed variables
(matrix Z).

• Step 2: Concerning to the variables:

allocate the J variables into Q subsets (matrix V),
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obtain the loadings of the CDPCA components (matrix A),

calculate the centroids in the reduced space of the Q CDPCA components
(matrix Ȳ),

identify the objects in the reduced space of the Q CDPCA components (matrix
Y).

These steps are summarized in Figure 1. At the beginning, in Step 1 and with the
standardized data matrix X of I objects described by J variables, the I objects are assigned
into P clusters by means of the matrix U. Next, each row of the data matrix is replaced by
its corresponding object centroid resulting then in the matrix Z. In Step 2, the allocation
of the J variables into Q disjoint subsets is specified in the matrix V and the CDPCA
component loadings are specified in the matrix A. To obtain these two matrices, an
iterative process working row-by-row and column-by-column of the matrices V and A
is executed in order to maximize the objective function F . At the end of Step 2, the
component score matrix, Y, and the object centroid matrix in the reduced space, Ȳ, are
found as well as the value of the objective function F . Thus, at the end of one iteration
of the algorithm, the I objects of the data matrix are allocated into P clusters, and
simultaneously displayed in a reduced space of Q disjoint components. The value of the
between cluster deviance is also calculated to evaluate the quality of the clustering of the
I objects in the reduced space. In the next iteration, the process is repeated using Y
as the input data matrix. The iterative procedure of the algorithm stops when there is
a difference between consecutive computations of the values of the objective function F
smaller than a specified tolerance.

Since the function F is bounded above, the algorithm converges to a stationary point,
which is at least a local maximum of problem ([8]). This procedure can be considered
as an heuristic and thus, to guarantee that the global maximum is achieved, it has been
suggested to run the algorithm several times for different initial allocation matrices U and
V, which are randomly chosen at the beginning of each run.

3 CDPCA: step by step

In this section, we present in detail the main algebraic features of the ALS algorithm for
performing CDPCA.

To show the main algebraic features of the CDPCA procedure, we have performed
CDPCA on a synthetic data matrix X constructed for satisfying the model (1) and where
the objects are partitioned along a set of three clusters and the variables along a set of
two components. For that purpose, we consider I = 15, J = 3, P = 3, Q = 2, and the
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Figure 1: The two basic steps of one iteration of the ALS algorithm for performing CD-
PCA.

following matrices satisfying the conditions mentioned in Section 2.1:

U =



1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1



, Ȳ =


√

2/3 −2√
2/3 1

−
√

3/2 1

 and A =

 1 0

0
√

2/2

0
√

2/2

 . (6)

It is easy to check that, under these circumstances, UȲAT is a standardized matrix. An
error E is added to obtain the model (1). Herein we considered the matrix E with values
randomly generated of a normal distribution with mean zero and standard deviation equal
to 0.8. Thus, we have

X = UȲAT + E
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being

UȲAT =



0.816 −1.414 −1.414
0.816 −1.414 −1.414
0.816 −1.414 −1.414
0.816 −1.414 −1.414
0.816 −1.414 −1.414

0.816 0.707 0.707
0.816 0.707 0.707
0.816 0.707 0.707
0.816 0.707 0.707

−1.224 0.707 0.707
−1.224 0.707 0.707
−1.224 0.707 0.707
−1.224 0.707 0.707
−1.224 0.707 0.707
−1.224 0.707 0.707



X =



0.917 −1.093 −2.382
1.860 −1.767 −0.289
0.460 −1.509 −0.132
1.290 −0.412 −1.405
1.567 −1.812 −1.530

0.982 −0.167 1.531
0.832 1.710 0.334
2.461 1.315 1.203
0.697 1.520 1.519

−2.273 0.152 0.464
−1.603 1.483 −0.476
−1.003 −0.043 −0.840
−0.799 1.763 −0.770
−1.133 0.002 1.145
−2.599 0.473 0.393


The horizontal and vertical lines separate the three clusters of objects and the set of
variables, respectively, and in accordance with (6).

Using the synthetic data matrix X, we now focus on the algebraic features behind
the two basic steps of the CDPCA methodology and afterwards illustrate some outputs
obtained by our R-based application.

3.1 Initialization

Set k = 0. At the beginning, the data matrix X is standardized:

xij 7→
xij − x̄j√

I∑
i=1

(xij − x̄j)2/I

where x̄j =
I∑

i=1
xij/I. Next, the parameters of the ALS algorithm to perform CDPCA are

initialized as follows:

Step 1. Parameters associated to the objects:

- The matrix U0 is randomly generated such that there is only a nonzero element
per row and that element is equal to 1 (i.e., U0 is the initial object assignment
matrix).

- The object centroid matrix X̄0 is computed. For such, the mean of each variable
into each object cluster is calculated.

9



- All the objects are identified by its cluster centroids. This information is pro-
vided by the centroid-based data matrix Z.

Step 2. Parameters associated to the components:

- The matrix V0 is randomly generated such that there is only a nonzero element
per row and that element is equal to 1 (i.e., V0 is the initial variable assignment
matrix)

- The CDPCA component loading matrix A0 is constructed column-by-column
solving Q independent PCA subproblems, one by each column. The nonzero
elements of the q-th column of V0 identify the original variables belonging to
the q-th CDPCA component. These elements will be considered in the PCA
subproblem to obtain the nonzero elements of the q-th column of A0. Thus,
the nonzero elements on the q-th column of A0 correspond to the first principal

component obtained from PCA applied on the submatrix W
(q)
0 which is ex-

tracted from the centroid-based data matrix Z0 = U0X̄0 (i.e., the data matrix
where each object is identified by the corresponding centroid) and restricted to
the original variables assigned into the q-th column of V0. Therefore, the q-th
column of A0 provides the direction vector with maximum variability among
the centroids in the subspace defined by the original variables assigned to the
q-th column of V0.

3.2 General iteration

At the beginning of the (k+ 1)-th iteration of the algorithm, the matrices Uk, X̄k Vk, Ak

and Ȳk are known.

Step 1. Parameters associated to the objects:

The matrix Uk+1 is given by one run of the K-means algorithm on the score matrix
Yk = XAk starting from the object centroid matrix Ȳk in the reduced space. The
P new clusters are obtained finding the new centroids, i.e., updating the centroid
matrix by X̄k+1 =

(
UT

k+1Uk+1

)−1
UT

k+1X and the object centroid-based matrix by
Zk+1 = UkX̄k.
Every cluster should be assigned with at least one object. On the procedure, if any
cluster becomes empty, then a selection step is fulfilled: half of the objects on the
bigger cluster is assigned into one of the empty clusters, and this process is repeated
while there are empty clusters.

Step 2. Parameters associated to the components:
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The updated matrices Vk+1 and Ak+1 are sequentially constructed row-by-row, and
in each row, the process is also sequentially performed column-by-column, in a sym-
biotic relationship with the maximization of the objective function F .
The matrix V specifies a partition of the original variables into Q disjoint compo-
nents. For updating Vk, each original variable will be evaluated in order to find
which component leads to a higher value of the objective function F , assuming that
all remaining variables are fixed in the components in accordance with Vk.
Firstly, the first row of Vk is updated by detecting for which column j, with
j = 1, · · · , Q, the allocation of its nonzero element yields better results in the
sense of the maximization of the objective function. Concretely, for the first row
(variable) of Vk+1, the best column (component) among Q is selected by solving Q

PCA subproblems associated to the updated matrices W
(q)
k+1, for q = 1, 2, · · · , Q,

respectively, assuming the Q possible positions of the nonzero element into the
first row of the potential updated matrix Vk+1. In the q-th PCA subproblem,
the first principal component is calculated determining the update of the q-th col-
umn of Ak+1. At this point, the centroid matrix on the reduced space, Ȳk+1, and
the objective function value, Fk+1, can be computed by Ȳk+1 = X̄k+1Ak+1 and
Fk+1 = tr

(
(Uk+1Ȳk+1)TUk+1Ȳk+1

)
. This process is done repeatedly to select the

best component to allocate the first row (variable) in Vk+1, which will coincide with
the component that yields the highest value of Fk+1.

The same process is now repeated for the remaining rows of Vk, and therefore,
Vk+1 is updated row-by-row. Hence, for each original variable there are solved Q
assignment subproblems. In each subproblem, a subspace of variables is considered
and the best direction (eigenvector) with maximum variability explained is obtained
performing a PCA step. Each variable will be included into a component associated
to the subproblem that maximizes the objective function.

Since there are J original variables, i.e., J rows on Vk, then there are J × Q sub-
problems to be solved in order to obtain Vk+1 and Ak+1. At the end of the Step
2, the best assignment will maximize the objective function, and consequently, the
between cluster deviance given by Fk+1/‖Yk+1‖2, where Yk+1 = XAk+1.

Stopping Criterion. Evaluate solutions:

If the difference between Fk and Fk+1 is smaller than a specified tolerance, then the
algorithm stops and returns the current iterates. Otherwise, repeat the iteration,
setting k := k + 1.

At the end of the algorithm, say, for instance, at the k∗-th iteration, besides returning
the allocation matrices Uk∗ , for the objects, and Vk∗ , for the variables, the component
loading matrix Ak∗ is also returned, which is a columnwise orthonormal matrix whose
elements are the loadings of the CDPCA components. Moreover, the CDPCA component
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score matrix Yk∗ is obtained, as well as the object centroid matrix in the reduced space
Ȳk∗ . These matrices can be used to obtain an approximation of the CDPCA model by

Uk∗Ȳk∗A
T
k∗ ,

providing a partition of the objects along a set of clusters and the variables along a set of
disjoint components.

It is worth mentioning that, unlike in the PCA technique, the ALS algorithm can not
establish the CDPCA components decreasingly sorted by their explained variability. In
order to be consistent with the classical form of representation of the components, at the
end of the algorithm the columns of the matrices associated to the CDPCA components,
namely, Vk∗ , Ak∗ , Yk∗ , and Ȳk∗ , will be rearranged. Since the changes are performed in
all of these matrices, the above CDPCA model is trivially satisfied with the rearranged
matrices.

3.3 Synthetic Data

In the following we illustrate an execution of the ALS algorithm described above using
the synthetic data. The data matrix is formed by I = 15 objects and J = 3 variables.
In order to evaluate the performance of the algorithm we will also analyse the ability of
the algorithm for detecting the P = 3 clusters of objects and Q = 2 subsets of variables
known in the synthetic data.

Considering the synthetic data, we set k = 0, specify the convergence tolerance as
ε = 10−5, and initialize the parameters of the CDPCA model.

Initialization:

In the Step 1, we get

U0 =



1 0 0
0 1 0
0 0 1
1 0 0
1 0 0
0 1 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 1 0
0 0 1
0 0 1



, X̄0 =

 0.690 −0.416 −1.022
0.673 0.145 0.440
−0.779 0.154 0.332

 , Z0 =



0.690 −0.416 −1.022
0.673 0.145 0.440
−0.779 0.154 0.332

0.690 −0.416 −1.022
0.690 −0.416 −1.022
0.673 0.145 0.440
0.690 −0.416 −1.022
0.673 0.145 0.440
−0.779 0.154 0.332
−0.779 0.154 0.332
−0.779 0.154 0.332
−0.779 0.154 0.332

0.673 0.145 0.440
−0.779 0.154 0.332
−0.779 0.154 0.332
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In the Step 2, it begins with

V0 =

 1 0
0 1
1 0

 .

Next, we determine A0. Fixing the first column of V0 (q = 1), the unit normed eigen-

vector v
(1)
0 associated to the largest eigenvalue of the correlation matrix of the submatrix

W
(1)
0 is selected and introduced in the nonzero entries of the first column of A0. A similar

procedure is performed for the remaining columns of V0. Thus, for q = 1, K(1) = 2 and
we get the 15× 2 matrix

W
(1)
0 =



0.690 −1.022
0.673 0.440
−0.779 0.332

0.690 −1.022
0.690 −1.022
0.673 0.440
0.690 −1.022
0.673 0.440
−0.779 0.332
−0.779 0.332
−0.779 0.332
−0.779 0.332

0.673 0.440
−0.779 0.332
−0.779 0.332



.

The unit normed eigenvector associated to the largest eigenvalue of the 2 × 2 matrix(
W

(1)
0

)T
W

(1)
0 is given by v

(1)
0 =

[
−0.809

0.587

]
. Hence, for the nonzero elements on the

first column of A0, which correspond to the nonzero entries on the first column of V0, we

shall introduce v
(1)
0 . Similarly, considering now the second column of V0, we have q = 2,
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K(2) = 1 and
(
W

(2)
0

)T
W

(2)
0 is a 1× 1 matrix. Thus, we get

W
(2)
0 =



−0.416
0.145
0.154
−0.416
−0.416

0.145
−0.416

0.145
0.154
0.154
0.154
0.154
0.145
0.154
0.154



and v
(2)
0 = [1] ,

and the nonzero element on the second column of A0 will be 1. Therefore, the CDPCA
component loading matrix is given by

A0 =

 −0.809 0
0 1

0.587 0

 .

At this point, the objects of the data matrix X can be assigned in the reduced space of
the CDPCA components by the object centroid matrix in the reduced space, Ȳ0, and the
objective function F should be evaluated for the current matrices U0 and Ȳ0. Regarding
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our example, Y0 is a 15× 2 matrix and Ȳ0 is a 3× 2 matrix given as follows.

Y0 =



−1.621 −0.981
−1.046 −1.533
−0.213 −1.322
−1.316 −0.425
−1.529 −1.570

0.365 −0.225
−0.172 1.310
−0.598 0.987

0.512 1.154
1.561 0.036
0.716 1.124
0.206 −0.123
0.132 1.353
1.302 −0.085
1.700 0.298



, Ȳ0 =

 −1.159 −0.416
−0.286 0.145

0.826 0.154

 .

initial approximation of Y0 provides a partition of objects along a set of three clusters
(identified by different colours in the matrix Y0, i.e, objects 1, 4, 5 and 7 are currently
assigned into one cluster, objects 2, 6, 8 and 13 are assigned into another cluster, and
the remaining objects are currently belonging to a third cluster) and also a partition of
variables along a set of disjoint components (PC1 = −0.809X1 +0.587X3 and PC2 = X2).
Notice that the current partition does not correspond to the final solution, nor to the
real partition; this is the result after computing the initial step of the CDPCA procedure.
Additionally, the objective function value for the current iterates is F0 = 11.438 and the
corresponding between cluster deviance is F0/‖Y0‖22 = 36.63%.

First iteration:

Set k = 1. In Step 1, the matrix of the allocation of objects into P clusters and the
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object centroid matrix are updated yielding the following matrices:

U1 =



1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 0 1
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
0 0 1
0 0 1



, X̄1 =

 0.735 −1.166 −0.936
0.174 0.882 0.056
−0.728 0.384 0.743

 , Z1 =



0.735 −1.166 −0.936
0.735 −1.166 −0.936
0.735 −1.166 −0.936
0.735 −1.166 −0.936
0.735 −1.166 −0.936
−0.728 0.384 0.743

0.174 0.882 0.056
0.174 0.882 0.056
−0.728 0.384 0.743
−0.728 0.384 0.743
−0.728 0.384 0.743

0.174 0.882 0.056
0.174 0.882 0.056
−0.728 0.384 0.743
−0.728 0.384 0.743


Notice that U1 specifies a new allocation of the objects.

In Step 2, we get

V1 =

 1 0
0 1
1 0

 , A1 =

 −0.660 0
0 1

0.750 0

 ,

Y1 =



−1.870 −0.981
−0.903 −1.533
−0.186 −1.322
−1.389 −0.425
−1.593 −1.570

0.682 −0.225
−0.041 1.310
−0.182 0.987

0.799 1.154
1.405 0.036
0.491 1.124
−0.011 −0.123
−0.055 1.353

1.355 −0.085
1.502 0.298



and Ȳ1 =

 −1.188 −1.166
−0.072 0.882

1.039 0.384

 .

At the end of the first iteration, F1 = 24.374 and the corresponding between cluster
deviance is 77.93%. The following step is to check the stopping criterion. Since |F1−F0| =
12.936 > ε, another iteration should be computed.

Further iterations:
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Figure 2: Real and CDPCA classification for the Synthetic Data.

In order to refine the solutions, more iterations of the algorithm are needed. In this
example, the best solution was obtained after two iterations and it took only 0.01seconds
to exhibit a solution. The obtained results are as follows. The object allocation matrix U
and the variable allocation matrix V, the component loading matrix A, the component
score matrix Y and the centroid matrix in the reduced space Ȳ already rearranged by
column (in decreasing order of the variability explained by the CDPCA) are given by

U =



1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1



,

V =

 0 1
1 0
1 0

 ,

A =

 0 1
−0.734 0
−0.678 0

 ,

Ȳ =

 1.492 0.735
−1.325 0.751
−0.359 −1.113

 ,

Y =



2.092 0.535
1.250 1.160
1.001 0.232
1.101 0.782
2.017 0.966
−0.796 0.578
−1.211 0.478
−1.492 1.559
−1.803 0.389
−0.352 −1.581
−0.591 −1.137

0.542 −0.738
−0.584 −0.603
−0.669 −0.825
−0.503 −1.797



.

The maximum for the objective function is 31.357 and the corresponding between
cluster deviance is 85.63%.

Our R-based implementation of this new methodology provides the graphical display
of the CDPCA classification taking the first two CDPCA components, as well as the real
classification when it is known. For the synthetic data, the plot is displayed in Figure 2.
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Clearly, the CDPCA was able to fulfil the classification and the objects were correctly
assigned to the clusters.

Besides that, our R function also returns a pseudo-confusion matrix, here displayed in
Table 1. The pseudo-confusion matrix allows one to easily verify how many objects are
correctly assigned into clusters, or how many objects are misclassified.

Table 1: Pseudo-confusion matrix for the Synthetic data set.
CDPCA Class

Real Class 1 2 3

1 5 0 0
2 0 4 0
3 0 0 6

From Table 1, we can observe that 5 objects are assigned to a cluster, 4 objects are
assigned into a second cluster and the remaining 6 objects belong to another cluster. This
table confirms the high accuracy classification produced by CDPCA on the Synthetic data.

4 Numerical Experiments

Here, we describe the numerical experiments of the CDPCA applied on a real data set.
Our experiments were run on a computer with an Intel Core i5-3317U CPU @ 1.70GHz,
with Windows 7 (64 bits) and 6GB RAM, using R version 3.0.0 (2013).

The CDPCA was implemented in R under the function CDpca [5]. This function is
suitable for data matrices of numeric values.

Since the ALS algorithm can be considered as a heuristic, it is advisable to run the
algorithm several times, as it has been suggested in [8], in order to find the global maxi-
mum. Therefore, all the presented numerical tests were run 1000 times and the tolerance
for convergence purposes was set to 10−5.

Our R implementation of CDPCA starts by standardizing the data. Among other
outputs, the CDpca function returns the CDPCA component loading matrix, the obtained
between cluster deviance, the objects assignment matrix, the variables assignment matrix,
a pseudo-confusion matrix when the real classification is known a priori, the variance
explained by the CDPCA components and a plot of the data projected into the two
dimensional space defined by the first two components is displayed.

4.1 Breast Cancer Data

The Wisconsin Breast Cancer Database [7] contains 683 instances (originally, there were
699 instances; however, 16 of them were excluded since they contain missing values), where
each of them is described by 9 attributes with integer values in the range 1 − 10 and a
real binary class label, which divides the instances into two classes: benign or malignant.
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The list of variables is formed by clump thickness, uniformity of cell size, uniformity of
cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin,
normal nucleoli, and the ninth variable mitoses describes an analysis of mitotic stages.
These variables are used in pathology reports for suggesting whether a lump in a breast
is benign or malignant.

The CDPCA was applied in this data set, by choosing P = 2 clusters of objects and
Q = 2 subsets of variables and executing our CDpca function in R. It took only 6 iterations
and 0.19seconds to yield a solution approximation satisfying the convergence tolerance.
The results of CDPCA are displayed in Tables 2, 3 and Figure 3.

The Table 2 reports the component loadings for both PCA and CDPCA.

Table 2: Component loadings for PCA and CDPCA on the Breast Cancer Data.
PCA loadings CDPCA loadings

Variables Component 1 Component 2 Component 1 Component 2

Clump Thickness -0.296 -0.073 0.350 0
Uniformity of Cell Size -0.403 0.229 0.429 0
Uniformity of Cell Shape -0.392 0.164 0.426 0
Marginal Adhesion -0.331 -0.098 0 -0.710
Single Epithelial Cell Size -0.249 0.200 0 -0.703
Bare Nuclei -0.442 -0.780 0.415 0
Bland Chromatin -0.292 0.008 0.387 0
Normal Nucleoli -0.354 0.469 0.374 0
Mitoses -0.124 0.188 0.216 0

Explained Variance(%) 69.05 7.20 51.71 17.74

Comparing the results in Table 2, performing an analysis of data from the obtained
results using the PCA technique can be complex. The resulting PCA component loadings
lead to components which do not seem interpretable. This is due to all the original
variables contribute to both PCA components and, therefore, it is quite difficult to detect
a pattern or relation among the variables for each of the two first principal components.
With CDPCA the interpretation of the components becomes easier, since each variable
contributes to a single component.

The first PCA component explains 69, 05% of the total variance and is mainly char-
acterized by Bare Nuclei, Uniformity of Cell Size and Uniformity of Cell Shape, while the
second PCA component explains only 7, 20% of the total variance and is mainly charac-
terized by Bare Nuclei and Normal Nucleoli. Notice that the variable Bare Nuclei is the
most contributing variable for both components.

Considering now the CDPCA technique, it can be observed that the first CDPCA
component explains 51, 71% of the total variance and is mainly characterized by Unifor-
mity of Cell Size, Uniformity of Cell Shape and Bare Nuclei, while the second CDPCA
component is only characterized by the original variables Marginal Adhesion and Single
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Figure 3: Real and CDPCA classification for the Breast Cancer Data.

Epithelial Cell Size, explaining 17, 74% of the total variance.

Table 3: Pseudo-confusion matrix for the Breast Cancer Data.
Preditive CDPCA class

1 2
Real class (benign) (malignant)

1 (benign) 434 10
2 (malignant) 19 220

Table 3 evaluates the predictive performance of CDPCA as a classification technique
on the Breast Cancer data. The real classification for this data set is as follows: 444 objects
into the benign class, and 239 into the malignant. Considering the pseudo-confusion matrix
obtained with the results on the CDPCA classification, we conclude that 453 objects are
assigned to the benign class and 230 are included into the malignant class. This means
that there are 29 misclassified objects, leading to a 4% of misclassification. Therefore,
the CDPCA classification presents an accuracy of 96% permitting to conclude that our
implementation of the CDPCA performed very well in practice.

In Figure 3, a graph representation of the data into the 2-dimensional reduced space
defined by the first two CDPCA components is depicted. This graph permits to visualize
the data in order to help on the detection of patterns hidden in the data set. In the
case of the Breast Cancer data, the graph shows that positive value for the first CDPCA
component is tendentiously attributed to subjects (objects) with malignant lumps (class
2).

The obtained CDPCA between cluster deviance is 80,20% of the total deviance.

20



5 Conclusions

Applications of the recently developed methodology CDPCA to data reveal that this
method can be successful for classifying the samples and exploring relationship between
variables, as well as for visualizing data into a reduced space. This paper is particularly
focussed on detailing a two-step-based scheme of the ALS algorithm used to perform CD-
PCA and on its algebraic features. A toy example is included to illustrate the resulting
transformations on the ALS algorithm step by step. A final remark is that the ALS algo-
rithm for CDPCA performed very well and also revealed high accuracy in the clusterings
for the presented examples and several other not shown herein.
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