1,730 research outputs found

    Relativistic iron K X-ray Reverberation in NGC 4151

    Get PDF
    Recent X-ray observations have enabled the study of reverberation delays in AGN for the first time. All the detections so far are in sources with a strong soft excess, and the measured delay is between the hard (1-3 keV) direct continuum and the soft excess (0.5-1 keV), interpreted as the reflection continuum smeared by relativistic effects. There is however an inherent ambiguity in identifying and studying the details of the lines in the soft excess. Here we report the first detection of reverberation in the iron K band in any AGN. Using XMM-Newton observations of NGC 4151, we find delays of order 2000 s on time-scales of 10e5 s between the 5-6 keV band and 2-3 and 7-8 keV bands, with a broad lag profile resembling a relativistically-broadened iron line. The peak of the lag spectra shifts to lower energies at higher frequencies, consistent with the red wing of the line being emitted at smaller radii, as expected from reflection off the inner accretion disk. This is a first detection of a broad iron line using timing studies.Comment: final version, corrected small typo

    Discovery of high-frequency iron K lags in Ark 564 and Mrk 335

    Get PDF
    We use archival XMM-Newton observations of Ark 564 and Mrk 335 to calculate the frequency dependent time-lags for these two well-studied sources. We discover high-frequency Fe K lags in both sources, indicating that the red wing of the line precedes the rest frame energy by roughly 100 s and 150 s for Ark 564 and Mrk 335, respectively. Including these two new sources, Fe K reverberation lags have been observed in seven Seyfert galaxies. We examine the low-frequency lag-energy spectrum, which is smooth, and shows no feature of reverberation, as would be expected if the low-frequency lags were produced by distant reflection off circumnuclear material. The clear differences in the low and high frequency lag-energy spectra indicate that the lags are produced by two distinct physical processes. Finally, we find that the amplitude of the Fe K lag scales with black hole mass for these seven sources, consistent with a relativistic reflection model where the lag is the light travel delay associated with reflection of continuum photons off the inner disc.Comment: 10 pages, 12 figures, accepted for publication in MNRA

    1H0707-495 in 2011: An X-ray source within a gravitational radius of the event horizon

    Get PDF
    The Narrow Line Seyfert 1 Galaxy 1H0707-495 went in to a low state from 2010 December to 2011 February, discovered by a monitoring campaign using the X-Ray Telescope on the Swift satellite. We triggered a 100 ks XMM-Newton observation of the source in 2011 January, revealing the source to have dropped by a factor of ten in the soft band, below 1 keV, and a factor of 2 at 5 keV, compared with a long observation in 2008. The sharp spectral drop in the source usually seen around 7 keV now extends to lower energies, below 6 keV in our frame. The 2011 spectrum is well fit by a relativistically-blurred reflection spectrum similar to that which fits the 2008 data, except that the emission is now concentrated solely to the central part of the accretion disc. The irradiating source must lie within 1 gravitational radius of the event horizon of the black hole, which spins rapidly. Alternative models are briefly considered but none has any simple physical interpretation.Comment: 9 pages, 19 figures, MNRAS in pres

    Training in Multimodality Imaging: Challenges and Opportunities

    Get PDF

    Detection of a variable ultra-fast outflow in the Narrow Line Seyfert 1 galaxy PG 1448+273

    Get PDF
    Relativistically blueshifted absorption features of highly ionised ions, the so-called ultra-fast outflows (UFOs), have been detected in the X-ray spectra of a number of accreting supermassive black holes. If these features truly originate from accretion disc winds accelerated to more than 10 per cent of the speed of light, their energy budget is very significant and they can contribute to or even drive galaxy-scale feedback from active galactic nuclei (AGN). However, the UFO spectral features are often weak due to high ionisation of the outflowing material, and the inference of the wind physical properties can be complicated by other spectral features in AGN such as relativistic reflection. Here we study a highly accreting Narrow Line Seyfert 1 galaxy PG 1448+273. We apply an automated, systematic routine for detecting outflows in accreting systems and achieve an unambiguous detection of a UFO in this AGN. The UFO absorption is observed in both soft and hard X-ray bands with the XMM-Newton observatory. The velocity of the outflow is (26900 +- 600) km/s (~0.09c), with an ionisation parameter of log ({\xi} / erg cm s^-1)=4.03_{-0.08}^{+0.10} and a column density above 10^23 cm^-2. At the same time, we detect weak warm absorption features in the spectrum of the object. Our systematic outflow search suggests the presence of further multi-phase wind structure, but we cannot claim a significant detection considering the present data quality. The UFO is not detected in a second, shorter observation with XMM-Newton, indicating variability in time, observed also in other similar AGN.Comment: Accepted for publication in MNRAS. 14 pages, 11 figures, 1 tabl

    The Closest Look at 1H0707-495: X-ray Reverberation Lags with 1.3 Ms of Data

    Get PDF
    Reverberation lags in AGN were first discovered in the NLS1 galaxy, 1H0707-495. We present a follow-up analysis using 1.3 Ms of data, which allows for the closest ever look at the reverberation signature of this remarkable source. We confirm previous findings of a hard lag of ~100 seconds at frequencies v ~ [0.5 - 4] e-4 Hz, and a soft lag of ~30 seconds at higher frequencies, v ~ [0.6 - 3] e-3 Hz. These two frequency domains clearly show different energy dependences in their lag spectra. We also find evidence for a signature from the broad Fe K line in the high frequency lag spectrum. We use Monte Carlo simulations to show how the lag and coherence measurements respond to the addition of Poisson noise and to dilution by other components. With our better understanding of these effects on the lag, we show that the lag-energy spectra can be modelled with a scenario in which low frequency hard lags are produced by a compact corona responding to accretion rate fluctuations propagating through an optically thick accretion disc, and the high frequency soft lags are produced by short light-travel delay associated with reflection of coronal power-law photons off the disc.Comment: 11 pages, 10 figures. Accepted for publication in MNRA

    Neurodegeneration: From cellular concepts to clinical applications

    Get PDF
    Developing therapies for neurodegenerative diseases will require new scientific approaches that take into account the detrimental effects of altered protein and RNA homeostasis on brain cells, the vulnerabilities of various organelles in certain diseases and aging neurons, and the complex multicellular interactions of the nervous system

    X-ray Reverberation close to the black hole in RE J1034+396

    Full text link
    In previous work, we discussed the detection of reverberation delays in the NLS1 1H0707-495. The delays originate close to the black hole. Here, we show that RE J1034+396 shows very similar lag properties. At low frequencies (< 1 \times 10-4 Hz), the time lag between energy bands increases with energy separation, similar to that commonly seen in Galactic black holes and other AGN. At higher frequencies (~ 3.5 \times 10-4 Hz), the soft (< 1 keV) and hard (> 3 keV) bands lag behind the intermediate band (1-3 keV). The simplest interpretation is that the intermediate band is dominated by the direct power-law continuum, while the soft and hard bands are dominated by the relativistically-smeared reflected emission. The low frequency delays are present in both available observations. The high frequency lags are only seen in one observation. In the observation where high frequency reverberation delays are observed, the spectrum contains a power-law component and there is a QPO in the light curve. In the other observation, no power-law component is required and no QPO is seen. The lags originate a few gravitational radii from the black hole, and the QPO is associated with the power-law emitting corona.Comment: Accepted for publication in MNRA
    • …
    corecore