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ABSTRACT
Reverberation lags in active galactic nuclei (AGN) were first discovered in the NLS1 galaxy,
1H0707−495. We present a follow-up analysis using 1.3 Ms of data, which allows for the
closest ever look at the reverberation signature of this remarkable source. We confirm previous
findings of a hard lag of ∼100 s at frequencies ν ∼ [0.5–4] × 10−4 Hz, and a soft lag of ∼30 s
at higher frequencies, ν ∼ [0.6–3] × 10−3 Hz. These two frequency domains clearly show
different energy dependences in their lag spectra. We also find evidence for a signature from
the broad Fe Kα line in the high-frequency lag spectrum. We use Monte Carlo simulations to
show how the lag and coherence measurements respond to the addition of Poisson noise and
to dilution by other components. With our better understanding of these effects on the lag, we
show that the lag-energy spectra can be modelled with a scenario in which low-frequency hard
lags are produced by a compact corona responding to accretion rate fluctuations propagating
through an optically thick accretion disc, and high-frequency soft lags are produced by short
light-travel delay associated with reflection of coronal power-law photons off the disc.

Key words: black hole physics – galaxies: active – X-rays: galaxies.

1 IN T RO D U C T I O N

Recent X-ray variability studies of active galactic nuclei (AGN)
have given us unique insights into the energetics and geometry of
the innermost regions of accreting black hole systems. By measuring
the phase lags between light curves at different energy bands, we
can probe distances as small as tens of lightseconds in AGN that
are billions of lightyears away. The narrow-line Seyfert I galaxy
1H0707−495 (z = 0.0411) was the first AGN shown to exhibit
reverberation lags (Fabian et al. 2009), and since then, this feature
has been significantly detected in 15 other Seyfert galaxies (de
Marco et al. 2011; Emmanoulopoulos, McHardy & Papadakis 2011;
Zoghbi & Fabian 2011; de Marco et al. 2012; Zoghbi et al. 2012).
Further evidence for reverberation lags of milliseconds or less has
been seen in the stellar mass black hole X-ray binary GX 339-4
(Uttley et al. 2011).

Reverberation lags can be explained by the standard reflection
model. Matter in a geometrically thin, optically thick accretion

� E-mail: ekara@ast.cam.ac.uk

disc is accreted on to the black hole, causing the accretion disc to
heat up and radiate, mostly in the ultraviolet (Shakura & Sunyaev
1973). The thermal disc photons are Compton upscattered to X-ray
energies in the corona or base of the jet, producing the observed
X-ray power-law continuum. Some continuum photons are directed
back towards the accretion disc, causing it to fluoresce with the
characteristic reflection spectrum. Soft lags or ‘reverberation lags’,
where the power-law continuum leads to the ‘soft excess’ associated
with the photoionized disc reflector, are thought to be due to the
effect of the light travel time between the corona and the inner
accretion disc. Hard lags, where the power-law continuum follows
variations at soft energies, have been explained as the propagation of
mass accretion rate fluctuations, which modulate regions emitting
soft photons before those emitting hard photons (Kotov, Churazov
& Gilfanov 2001; Arévalo & Uttley 2006).

XMM–Newton observations of 1H0707−495 have been some of
the most important resources in gaining an understanding of the X-
ray emission from the innermost regions of active galaxies. The first
XMM–Newton observations of 1H0707−495 showed a sharp drop
in the spectrum at ∼7 keV (Boller et al. 2002). Two interpretations
were developed to explain this feature, namely an absorption edge
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from a partial covering absorber (Tanaka et al. 2004) and the edge to
the blue wing of a broad Fe Kα line, produced in the inner regions
of the disc (Fabian et al. 2004).

Further observations in 2008 showed more evidence for the inner
disc interpretation, as the complementary broad Fe Lα line was
also clearly identified (Fabian et al. 2009; Zoghbi et al. 2010). In
addition to this spectral evidence, timing studies showed an ∼30-s
light travel delay between the power-law source and the reflection
from the disc. Miller et al. (2010) interpreted this time delay as being
due to scattering in a more distant reflector/absorber associated with
a wind directed along the line of sight, though the subsequent X-
ray reverberation detections in several different AGN make this an
unlikely scenario. See Zoghbi, Uttley & Fabian (2011) for further
discussion regarding problems with this model.

In 2011, 1H0707−495 went into a low flux state, which triggered
an observation with XMM–Newton. The spectral drop associated
with the blue wing of the Fe Kα line appeared at ∼6 keV, suggesting
emission very close to the central black hole, within 1 rg of the event
horizon (Fabian et al. 2012). Lastly, recently public observations
from 2010 confirm reflection from a highly ionized disc, and suggest
that the reflection spectrum could be slightly modified by a highly
ionized outflow (Dauser et al. 2012).

In this paper, we compile all the XMM–Newton observations
from 2000 to 2010 (>1.3 Ms), to take the closest ever look at the
reverberation lags in 1H0707−495. With ∼2.5 times the data set,
we are better able to define the lag spectrum and structures in the
data that were suggested by the analysis of Zoghbi et al. (2011). The
observations and data reduction are described in Section 2, and the
results are presented in Section 3. We continue with a study of the
robustness of the lag measurement using Monte Carlo simulations
in Section 4, and discuss our interpretation through a physical model
for the lag spectrum in Section 5.

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N

1H0707−495 has been observed several times over the past 12
years with the XMM–Newton satellite (Jansen et al. 2001). The 14
observations used in this analysis are shown in Table 1. We focus
on the data from the EPIC-PN camera (Strüder et al. 2001), which
were all made in large window imaging mode, with the exception of
the 2000 and 2001 data, which were taken in full window imaging
mode. All the data were reduced in the same way using the XMM–
Newton Science Analysis System (SAS v.11.0.0) and the newest
calibration files. The data were cleaned for high background flares,
and were selected using the condition PATTERN ≤ 4. No significant
pile-up was found in any of the observations.

The source spectra were extracted from circular regions of radius
35 arcsec centred on the maximum source emission, and the back-
ground spectra were chosen from background regions that were the
same distance to the readout node as the source region. In order to
get the best description of the background, we chose the background
regions to be as large as possible, often twice the radius of the source
region. The position of the background regions was chosen to avoid
the Cu K emission lines from the electronic circuits behind the PN
CCD that contaminate the background at 8.0 and 8.9 keV. Despite
these efforts, the Cu K line still mildly contaminates the data, and
so we take heed with regard to the highest energy bin at 7–10 keV.

The response matrices were produced using RMFGEN and AR-
FGEN in SAS. The spectra from all observations were merged before
fitting using MATHPHA in FTOOLS, and the resulting combined spec-
tra were rebinned to contain a minimum of 20 counts per bin.
Because the observations differ significantly in flux, we also used

Table 1. The 14 XMM–Newton observations used in this
analysis, amounting to 1.3 Ms of data.

Obs. ID Date (UT) Exposure (s)

0110890201 2000-10-21 00:38:28 46 018
0148010301 2002-10-13 11:10:37 79 953
0506200301 2007-05-14 02:19:28 40 953
0506200201 2007-05-16 06:08:30 40 914
0506200501 2007-06-20 13:11:46 46 913
0506200401 2007-07-07 10:40:03 42 866
0511580101 2008-01-29 18:28:24 123 815
0511580201 2008-01-31 16:29:46 123 670
0511580301 2008-02-02 18:22:11 122 504
0511580401 2008-02-04 18:24:21 121 922
0653510301 2010-09-13 00:32:10 116 575
0653510401 2010-09-15 00:34:12 128 200
0653510501 2010-09-17 00:36:42 127 602
0653510601 2010-09-19 00:35:36 129 001

TABGTIGEN in SAS to filter the observations by rate, in order to
check the flux-resolved spectra and compare them to the combined
spectrum from the 14 observations. Spectral fitting was performed
using XSPEC v12.5.0 (Arnaud 1996). All quoted errors correspond
to a 90 per cent confidence level, and energies are given in the rest
frame of the source. The quoted abundances refer to solar abun-
dances in Anders & Grevesse (1989).

3 R ESULTS

3.1 Lag versus frequency spectrum

Using the light curves of the 14 observations, we compute the
Fourier phase lag between the hard and soft energy bands, following
the technique described in Nowak et al. (1999). We write the Fourier
transform of the soft light curve, s, as S = |S|eiφs . The product of S
with the complex conjugate of the hard band FFT, H∗, is written as
H ∗S = |H ||S|ei(φs−φh), which gives us the phase difference between
the two signals. The overall Fourier phase lag φ(f) is the phase of
the average cross power spectrum. That is, φ(f) = arg[〈H∗(f)S(f)〉].
We then convert this to a time lag, τ ≡ φ(f )/2πf . We note that the
Fourier phase is defined on the interval (−π, π), which can cause
phase wrapping at high frequencies (Nowak & Vaughan 1996).

Fig. 1 shows the lag-frequency spectrum between the energy
bands 0.3–1.0 keV (soft excess dominated) and 1.2–4.0 keV (power
law dominated). The light curve segments range in individual expo-
sure times from 40 000 to 110 000 s with 10-s bins. The frequency
range goes up to 0.01 Hz, beyond which the signal is dominated by
Poisson noise. As seen in previous timing studies of 1H0707−495
by Fabian et al. (2009), Zoghbi et al. (2010) and Emmanoulopoulos
et al. (2011), the hard flux is shown to lag behind the soft by hun-
dreds of seconds at frequencies less than ∼5 × 10−4 Hz (hereafter
referred to as the ‘hard lag’). Above frequencies of ∼7 × 10−4 Hz,
the soft flux is clearly shown to lag the hard by roughly 30 s (referred
to as the ‘soft lag’).

3.2 Lag versus energy spectrum

Taking a closer look, we examine how the time lag evolves with
energy, using roughly equal logarithmically spaced energy bands
(henceforth ‘energy bins’) in a particular frequency range, similar
to Zoghbi et al. (2011). For each energy bin, the lag is computed
between the light curve in that bin and the light curve of a broader
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Figure 1. Lag-frequency spectrum using 1.3 Ms of data. The lag is calcu-
lated between the soft energy band (0.3–1 keV) and the hard band (1.2–4
keV). We adopt the convention that the negative lag means the soft band
lags behind the hard band. The most negative lag (at 1.33 × 10−3 Hz) is
−31.9 ± 4.2 s.

reference band from 0.3 to 0.8 keV. This reference energy range is
selected because it is the band with the highest signal-to-noise ratio.
For lags computed in energy bins between 0.3 and 0.8 keV, the light
curve of the energy bin is removed from the reference to ensure
that the Poisson noise remains uncorrelated. The lags have not been
shifted, and therefore zero-lag means that there is no time delay
between that bin and the soft-excess reference band. Similarly, a
negative lag means that that bin leads to the reference, and positive
lags mean that that bin lags behind the reference. Previous lag-
energy studies by Zoghbi et al. (2011) use the entire energy range
as the reference band. We find that this does not change the shape of
the lag-energy profile, but does change for an arbitrary constant lag
shift in the entire spectrum. By choosing the reference band from
0.3 to 0.8 keV, we have a more physical interpretation of what the
value of the lag means, namely that it lags behind or leads to the
soft excess.

The top panel of Fig. 2 shows the energy dependence of the lag
for the low frequencies where we see the hard lag. The lag-energy
spectrum is shown in two frequency ranges: for the ‘low-frequency
range’ (ν = [1.65–5.44] × 10−4 Hz) and the ‘very low frequency
range’ (ν = [0.5–1.65] × 10−4 Hz). The lag spectrum exhibits
a general positive trend with increasing energy. We see a nearly
constant zero-lag from bins in the 0.3–0.9 keV range. At 1 keV, the
lag jumps up hundreds of seconds, meaning that the signal from 1
to 2 keV is occurring hundreds of seconds after the reference band.
The lag continues to increase with energy up to 10 keV.

The low-frequency and the very low frequency lag spectra have
the same general shape, but the lag time-scales are twice as long for
the very low frequency range. For the case of propagating viscous
fluctuations, this corresponds to variability on long time-scales oc-
curring further away from the centre. We also notice that the profile
differs at low energies between the two frequency ranges. The low-
frequency lag shows a clear step up to ∼100 s, where the very low
frequency lag shows a more gradual increase up to the constant lag
at 1 keV. This suggests that individual components can contribute
more at specific frequencies. In this case, the soft excess (due to
thermal or reflected emission) dominates more at the low frequen-
cies, closer to the central region, than the very low frequencies, from
further out.

Figure 2. Lag-energy spectra showing the energy dependence of the lags at
particular frequencies. (a) The lag-energy spectrum for very low frequencies,
ν = [0.5–1.65] × 10−4 Hz (blue circle; left axis), and low frequencies, ν =
[1.65–5.44] × 10−4 Hz (red square; right axis). The upward trend means
that the low-energy component leads to the high energies at these long
time-scales. (b) High-frequency lag-energy spectrum for ν = [0.96–2.98] ×
10−3 Hz. The nearly zero-lag at low energies, and again at ∼6.5 keV, means
that the signal at these energies responds at the same time as the reference
band.

The bottom panel of Fig. 2 shows the energy dependence of the
lag at higher frequencies, [0.96–2.98] × 10−3 Hz (i.e. the soft lag
frequencies). This lag spectrum has a general negative trend, starting
at around zero lag in the bins from 0.3 to 0.7 keV, and decreasing
to ∼−60 s in the 3–4 keV bin, after which it peaks to zero-lag
at the energy of the Fe Kα line at ∼6 keV. Simulations of lags
between coherent light curves with the same noise level as that of
the 7–10 keV bin suggest that despite the low signal-to-noise ratio
the lag can be recovered. Though we have taken the steps to remove
contamination by the Cu K line of the electronics in the 7–10 keV
bin, some residuals might affect measurements in this bin.

It is important to note that the high-frequency lag spectrum looks
very different from the one at lower frequencies, suggesting that
different physical processes contribute to the hard versus soft lags.

The high- and low-frequency lag spectra found here with the
1.3 Ms sample are similar to those in Zoghbi et al. (2011), but are
much more clearly defined. Of special interest is the high-frequency
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feature at ∼6 keV, the energy of the Fe Kα line. A clear lag signature
from the Fe L line is not seen in the data, and this is likely because of
the thermal reprocessed emission prominent at low energies (Zoghbi
et al. 2011, and see Section 5).

3.3 Covariance spectrum

The covariance spectrum is a measure of the absolute amplitude
of correlated variations in count rate as a function of energy (see
Wilkinson & Uttley 2009; Uttley et al. 2011). Using this approach,
we can examine the time-varying portion of the energy spectrum
that is correlated with the reference band at a particular frequency
range. Note that the covariance spectrum is not simply measuring
the fractional variability amplitude, as in an rms spectrum, but rather
is proportional to the photon count rate, allowing us to make a direct
comparison with the time-integrated spectrum.

Fig. 3 shows the covariance spectrum at the two low frequency
ranges and the high-frequency range. We fit a simple power-law
model at 1–3 keV for each spectrum in order to measure the power-
law continuum without any contamination from the red wing of the
Fe Kα line. The photon indices are shown in Table 2. We found that
the photon index hardens with increasing frequency from � = 2.94
± 0.04 to � = 2.59 ± 0.19. We will discuss further implications of
this result in Section 5. The same spectral hardening is suggested
when fitting the data from 1.3 to 3 keV alone, though the change is
not significant.

Figure 3. Covariance spectrum for very low frequencies ν = [0.5–1.65] ×
10−4 Hz (blue circle), low frequencies ν = [1.65–5.44] × 10−4 Hz (red
square) and high frequencies ν = [0.96–2.98] × 10−3 Hz (black diamonds).
At low energies the error bars are much smaller than the symbols. We fit a
simple power-law model at 1–3 keV. For very low and low frequencies � ∼
2.9, and for high frequencies � ∼ 2.6.

Table 2. Power-law photon indices for the covariance
spectra in three frequency ranges, and the time-integrated
spectrum for comparison.

Frequency (Hz) Photon index, �

ν = [0.5–1.65] × 10−4 2.94 ± 0.04
ν = [1.65–5.44] × 10−4 2.82 ± 0.05
ν = [0.96–2.98] × 10−3 2.59 ± 0.19

Time-integrated 3.12 ± 0.01

Of the three frequency ranges shown here, the high-frequency
covariance spectrum shows the most prominent peak at 0.9 keV, the
energy of the Fe L line. The spectrum also appears to increase again
at 3–4 keV, the energy of the red wing of the Fe Kα line. These
observations further hint that the high frequencies are probing the
inner accretion disc, where relativistic reflection is greatest.

3.4 Coherence

Coherence is a measure of the fraction of the variance of one pro-
cess at a given frequency that is a linear transform of the other.
In other words, a unity coherence shows that one time series can
completely predict the other. In order to measure the lag between
two signals, they must have some degree of coherence. We calcu-
late the coherence and error bars using equation 8 from Vaughan
& Nowak (1997). Earlier studies by Zoghbi et al. (2010) examined
the coherence as a function of the frequency between the hard (1–
4 keV) and soft (0.3–1 keV) band, and found that for these energies,
the coherence is high, above ∼0.75, up to ∼5 × 10−3 Hz, where it
drops sharply due to dominating Poisson noise.

Fig. 4 shows the coherence in each energy bin relative to the ref-
erence band (0.3–0.8 keV). If the reference band is chosen to be the
entire energy range (0.3–10 keV), the shape of the coherence spec-
trum does not change, but the amplitude of the coherence becomes
slightly higher. This shows that any structure seen in the coherence
spectra is not an artefact of the chosen reference band.

For all of the examined frequency ranges, the coherence is ∼1
below 1 keV, and jumps down at 1 keV, suggesting that we are
seeing contributions from distinct variable components.

In the highest energy bins, the coherence drops, especially for
high frequencies. In the following sections, we describe our Monte
Carlo simulations, which show that dilutions from other uncorre-
lated components can decrease the coherence, but the lag is still
recovered. We therefore conclude that while some degree of coher-
ence is necessary, unity coherence is not a strict requirement for an
accurate measurement of the lag.

Figure 4. The coherence in each energy bin at very low frequencies ν =
[0.5–1.65] × 10−4 Hz in blue circles, low frequencies ν = [1.65–5.44] ×
10−4 Hz in red squares and high frequencies ν = [0.96–2.98] × 10−3 Hz in
black diamonds. In Section 4, we show that the lag can still be accurately
recovered despite low coherence.

 at U
niversiteit van A

m
sterdam

 on July 3, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


The closest look at 1H0707−495 2799

4 SI M U L AT I O N S

We conducted simulations to understand the nuances of the lag
calculation, and to gain clearer insights into the possible reasons for
the structure seen in the lag spectra. In this section, we examine the
robustness of the lag measurement using Monte Carlo simulations.

Simulated light curves were made from red-noise power spectra
(PSD) using the Timmer & Koenig (1995) method, which allows
for randomness in both the phase and amplitude of the Fourier
transform. The underlying red-noise PSD has a spectral index of
1.6, consistent with the PSD of the data from 0.3 to 10 keV. In order
to account for possible red-noise leakage into higher frequencies,
the light curves were made ∼10 times too long, and cut down to the
average light curve length of the observations (Uttley, McHardy &
Papadakis 2002). The light curves were then scaled to the average
count rate and variance of all the observations. To simulate a lag,
light curve pairs were generated from the same random realization
of the Fourier transform. A frequency-independent time delay was
then added to the Fourier transform for one light curve. The lag
and coherence were measured in the high-frequency range ν =
[0.96–2.98] × 10−3 Hz.

With these simulated light curves, we test the effects of Poisson
noise and dilution on the measurements of coherence and lag.

4.1 The effect of Poisson noise

In order to understand the effect of Poisson noise on the measure-
ment of the lag, we simulated 1000 coherent light curve pairs that
were subjected to increasing amounts of noise. A constant time lag
of 50 s was added to one of the light curves in the pair. We calculate
the lag for each of the 1000 light curve pairs made in the simulation.
The mean lag was determined from the 1000 measured lags, and
the standard deviation of the lag distribution calculated. Regardless
of the Poisson noise, the mean lag recovered remains consistent
with the input, though increasing the noise significantly increases
the standard deviation of the recovered lags. We test the recovery
of the lag errors for 14 simulated light curve pairs (i.e. the same
number of observations as we use to calculate the lag), and find that
the sizes of these error bars are consistent with the data.

Poisson noise has the effect of adding a component with a random
phase and amplitude to the Fourier transform of our signal. Since
the lag is a measurement of the phase lag between coherent signals,
an incoherent random phase does not affect the value of the lag.

These simulations show that Poisson noise does not affect the
value of the measured lag as a consistent estimator of the intrinsic
lag. We find that at high frequencies and at high energies where
there is a low signal-to-noise ratio, it is still possible to measure a
meaningful lag, as long as appropriate error calculations are made.

4.2 The effect of dilution

Dilution is another possible effect on the measurement of the lag and
coherence. If the signals are contaminated by an uncorrelated signal
or by another correlated light curve, the lag measurement will be
affected. We check the effect of dilution with three scenarios shown
in Fig. 5.

(i) Adding an incoherent component: we simulate 1000 pairs of
coherent light curves with a 50-s time delay. We contaminate a
fraction of one of the coherent light curves with an uncorrelated
light curve (different realization of the random Fourier amplitude
and phase) and measure the lag and coherence. We find that the co-

herence drops, but the value calculated for the lag is still accurately
recovered.

(ii) Mixing coherent components: we simulate 1000 coherent
light curves with a 50-s time delay and mix one light curve with
a fraction of the other light curve. We find the lag to be a simple
average of the mixed components, while the coherence remains
at 1.

(iii) Two varying components: we simulate one set of 1000 co-
herent light curve pairs offset by 50 s, and another set of 1000 light
curve pairs offset by 20 s. The light curves offset by 50 s do not
have the same realization of the Fourier amplitude and phase as
the 20-s set. Thus, the two components are variable, but not co-
herent. We dilute the 50-s pairs with an increasing amount of the
20-s pairs and find that the recovered lag is a weighted contribution
from both components. This is representative of a scenario in which
there are two variable components that vary incoherently with each
other, and have different lags and different spectral shapes. This
simulation shows that the measured lag can be a weighted contri-
bution from mixed spectral components, and particularly, that low
coherence may be an indication of this mixing.

For clarity, Fig. 5 shows the effect of dilution without the addition
of Poisson noise into the signal. Even with the addition of Poisson
noise (equivalent to that seen in the data), the effects of dilution are
the same.

These three scenarios show that the signal can be recovered de-
spite contamination by an incoherent signal. Also, if signals are
mixed, we will see a proportional drop in the measurement of the
lag difference. We also show that requiring a coherence of 1 for a
reliable lag measurement is overly conservative.

In the context of the lag spectra for 1H0707−495, we see from
these simulations that in each energy band, the lag is not just due to
the reflection or the power law alone, but rather from a contribution
of both. The effect of dilution has been discussed by Zoghbi et al.
(2011), and in the following section, we take this idea further by
modelling the lag spectrum.

5 SI M U L AT I N G T H E L AG SP E C T RU M

In the previous section, we showed the effect of dilution on the
lag spectrum. In this section, we show how the lag spectrum can be
decomposed via simulations by accounting for dilution in the signal.
We offer these simulations as an illustration of a consistent reflection
model that follows the data, and not as a statistical fit. We first review
our simple reflection model for the time-integrated spectrum, and
then show how the lag-energy spectrum can be modelled in light of
a reflection scenario.

5.1 Modelling the time-integrated spectrum

In this section, we briefly describe our model for the time-integrated
energy spectrum of the entire 1.3 Ms data set. While the en-
ergy spectrum is not the focus of this paper, we will rely on the
spectral model for simulating the lag-energy spectrum in the next
section.

Because we are working with such a large amount of data, we
find that our model fit is completely dictated by the spectrum below
1 keV, where the signal-to-noise ratio is highest. This is ameliorated
when including a 2 per cent systematic uncertainty to all bins, which
is a rough, but low-end, estimate of the calibration uncertainty. This
allowed the high-energy component (and in particular the clean
profile of the Fe Kα line) to contribute to the model fit. We also
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Figure 5. The recovery of the lag and coherence for diluted signals. When the fraction on the x-axis is 1, the signal is completely undiluted, and the 50-s lag
is recovered with unity coherence. (i) The light curve with a 50-s delay is contaminated by a fraction of uncorrelated signal. (ii) The lag is measured between
light curve pairs with 50-s offset that are being mixed together. The recovered lag is a simple average of the lags of the different spectral components. (iii) The
lag is computed between two variable, but uncorrelated light curve pairs: one pair is offset by 50 s and the other is offset by 20 s. The coherence decreases with
more mixing. The shaded regions represent the standard deviation of the 1000 simulated lags.

split the 1.3 Ms data into four flux-resolved spectra, and fit the same
models, to understand how the spectra behave in different states.
We find no significant difference in the spectral shape aside from
changes in the normalization. While ionization changes could be
expected in different states, so too could we expect density change
if the accretion rate changes. Therefore it is perhaps not surprising
that the spectral shape remains significantly unchanged between
flux states.

We first follow previous spectral work by Fabian et al. (2012)
and Dauser et al. (2012) in fitting the spectrum with two reflection
models that are irradiated by a single, steep power law. The re-
flection models consist of ionized reflection from an accretion disc
(REFLIONX; Ross & Fabian 2005), which is relativistically smeared
(KDBLUR2F). We also include a blackbody to account for both direct
disc photons and thermally reprocessed photons from an irradiated
disc. This model yields χ2/dof = 1940/1528 = 1.27.

Dauser et al. (2012) showed that adding absorption from a highly
ionized outflow (SWIND1; Gierliński & Done 2004) significantly
improves the fit. In our modelling of the entire data set, we also
find this to be a good fit (χ2/dof = 1615/1524 = 1.06) and agree
with the possibility of a highly ionized outflow. However, as this
additional component does not significantly change any of the other
fit parameters, it does not affect our simulations of the lag-energy
spectrum, and we do not consider it further in this paper.

Given our results from the covariance spectrum discussed in
Section 3.3, we examined a model in which the two reflectors are
irradiated by two power laws with different spectral indices. The
spectral hardening of the covariance spectrum at high frequencies
suggests that there could be two coronal regions, one that originates
close to the centre and produces a hard power law with short time-
scale variability, and another more extended region which produces
a steeper power law with longer variations. Both power-law compo-
nents likely contribute to the reflection. We simplify this complex
model of two power laws and two reflectors by assuming the same
emissivity profile for both reflectors. We assume a maximally spin-
ning black hole with a steep emissivity that flattens to q = 3 at a
break radius of 2.5 rg (where rg = GM/c2). This model results in
the best fit of χ2/dof = 1638/1526 = 1.07.

Figure 6. Time-integrated energy spectrum for the entire 1.3 Ms exposure.
The data are modelled with a blackbody (green dot–dashed), two power
laws (thick blue and thin red solid) and two reflection spectra (low ionization
reflector, ξ ∼ 50, irradiated by the soft power law as a thin red dotted line,
and high ionization, ξ ∼ 500, irradiated by the hard power law as a thick
blue dotted line). We use the fraction of each component to the total model
in order to weight the light curves in our simulations of the lag-energy
spectrum.

This picture of an extended corona is congruous with observations
from Fabian et al. (2012), when 1H0707−495 went into a low state,
which was interpreted as emission produced by an irradiating source
within 1 rg of the event horizon. The photon index for this low state
observation was � = 2.71+0.1

−0.07. In this study, the hard power law
in our time-integrated spectrum is � ∼ 2.65, and in the covariance
spectrum at high frequencies it is � = 2.59 ± 0.19.

Fig. 6 shows our best-fitting model with two reflectors and two
power laws. The spectral parameters are shown in Table 3. This
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Table 3. Best-fitting spectral parameters for the time-integrated
spectrum.

Component Parameter Value

Galactic absorption NH (1022 cm−2) a 0.058
Intrinsic absorption NH (1022 cm−2) 0.031 +0.005

−0.002

Blackbody Abb × 10−5 4.5 +1.1
−0.6

kTbb (eV) 88.8+2.2
−3.3

Power law 1 A�1 × 10−4 2.3 +0.6
−1.7

�1 2.66+0.04
−0.07

Power law 2 A�2 × 10−4 7.4 +0.4
−1.3

�2 3.30+0.0
−0.02

kdblur2f rin(rg) 1.235+0.01
−0.0

q1 10.0 +0.
−0.1

rout(rg) a 400.0
i (◦) 46.8 ±0.4

rbreak(rg) 2.49+0.03
−0.02

q2
a 3.0

reflionx 1 Arefl1 × 10−6 0.13 ± 0.02
ξrefl1 (erg cm s−1) 484 +9

−34

ZFe 13.4 +0.5
−0.4

reflionx 2 Arefl2 × 10−6 43.0 +2.4
−3.3

ξrefl2 (erg cm s−1) 49.7 +0.4
−4.0

χ2/dof 1638/1526 = 1.07

a frozen.

model will be used in the following section for simulating the lag-
energy spectra.

5.2 Modelling the lag-energy spectrum

Similar to the Monte Carlo simulations in Section 4, we simu-
late 1000 sets of three identical (but time-shifted) light curves to
represent three spectral components: a blackbody, power law and
reflector. The light curves are simulated without Poisson noise, but
as noted in Section 4.2, the general effects of dilution on the lag are
the same. The signal in each energy band is composed of a frac-
tional contribution from each of these three components, weighted
by their contributions in the time-integrated energy spectrum shown
in Fig. 6.

We note that the time-integrated spectrum is not the ideal mea-
sure for the weighting because each of the spectral components
likely contributes more in certain frequency ranges than in oth-
ers. However, we find that we can still model the lag by making
some assumptions about the variability of the components in the
time-integrated spectrum.

(i) The blackbody component is likely composed of both direct
disc photons (that would be appreciable in the low-frequency signal)
and thermal photons that are produced by the irradiating continuum
heating up the surface of the disc (discernible in the high-frequency
signal). Because we cannot distinguish between the low- and high-
frequency contributions in the time-integrated spectrum, we use the
entire blackbody when calculating the weighting for both the high-
and low-frequency lags.

(ii) We have seen in Section 3.3 that the power law does not
contribute the same at all frequencies, and there is likely mixing

Table 4. Selected time delays for each component in the high- and low-
frequency lag simulations. The smaller the value of the lag, the earlier it
responds.

Low-freq. lags (s) High-freq. lags (s)

Blackbody 0 0
�hard 1000 −90
�soft 400 –

Reflection – −10

between at least two power-law components at different frequencies.
For the low frequencies, the fluctuations propagate inwards and are
upscattered in the soft power law emitting corona first, and then later
in the inner hard corona. In our simulations of the low-frequency
lag spectrum, we include the signals from both the hard and soft
power-law components. For the high frequencies, where we are
presumably probing closer to the inner regions, the hard power-law
component dominates, and therefore in our high-frequency model,
we only simulate the hard power-law component.

(iii) We assume that the lag due to reflection is most appreciable
on short time-scales, and so we only include the reflection compo-
nent when modelling the high-frequency lag spectrum. It is expected
that reflection contributes somewhat at low frequencies as well, but
the signal is dominated mostly by the variability from propagating
viscous fluctuations.

The time delay between the contributing spectral components is
assumed to be constant for this simple model (i.e. assuming a delta
function transfer function). We input reasonable expectation values
for the time delays which are obtained from the geometry implied by
our model. Table 4 gives the time delays for both the low- and high-
frequency lag spectral models. We reiterate that the smaller the value
of the lag, the earlier it responds. For instance, at low frequencies,
the power law lags behind the blackbody, and therefore its input lag
is greater. At high frequencies, the power law leads to the reflection,
and so its input lag is more negative than the reflection lag. In other
words, at high frequencies, the power law responds first, followed
by reflection 80 s later, and finally followed by the reprocessed
blackbody 10 s after the reflection. Fig. 7 illustrates how the signals
from each component are weighted by the time-integrated spectrum
to produce the simulated lags.

The time lag is then calculated in the usual way, with respect
to the reference signal from 0.3 to 0.8 keV. The top panel in Fig.
8 shows the simulated lag spectrum in the frequency range ν =
[0.5–1.65] × 10−4 Hz. Notice how the step up from 0 to ∼ 200 s
arises naturally due to the time delays between the thermal emis-
sion in the disc and the continuum emission in the corona. This
can be easily explained by the fractional contribution of the black-
body and two power-law components in each band compared to
the reference. For instance, at 3 keV, the signal is roughly com-
posed of two parts soft power law (with lag = 400 s) and one
part hard power law (lag = 1000 s), amounting to an average lag
of ∼600 s. This lag is compared to the reference band, which is
roughly composed of 30 per cent blackbody (lag = 0 s), 10 per cent
hard power law and 50 per cent soft power law, amounting to an
average lag of ∼300 s. The lag at 3 keV is therefore calculated to be
∼300 s.

The bottom panel of Fig. 8 shows the lag in the frequency range
ν = [0.96–2.98] × 10−3 Hz. The model follows the general shape
of the data, and suggests that reflection is playing a major role in
diluting the intrinsic lag of the power law. However, the model is
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Figure 7. Illustration demonstrating how the high-frequency lag spectrum
is simulated. (i) The input time delays for the hard power law (green),
reflection (red) and blackbody (blue) as a function of energy. The power
law responds first, followed by the reflection 80 s later and the reprocessed
blackbody 10 s after that. (ii) The fraction of the hard power law, reflection
and blackbody to the total time-integrated spectrum. (iii) The simulated lag
that is compared to the data in the bottom panel of Fig. 8. Each signal in (i)
is weighted by its contribution in (ii), and the total time lag is then summed
to make the simulated lag spectrum in (iii).

particularly unsatisfactory in the 3–4 keV bin. At 3–4 keV, the red
wing of the Fe Kα line dominates the reflection spectrum. This is
the reflected emission from the innermost regions of the disc, and
therefore, it is the signal that responds first. To account for this,
we input a time lag of −75 s for the reflection in this bin, which
amounts to the reflection lagging behind the power law by just 15 s.
Therefore, the effect of dilution on the power law due to reflection
is less in this band, making the lag appear to be lower. Fig. 9 shows
the results of the simulations with the addition of a fast response
from the red wing of the Fe Kα line. The addition of the response
from the red wing significantly improves the fit to the data.

6 D ISCUSSION

6.1 The low-frequency lags

The large positive lag at low frequencies has been explained as
the viscous propagation of accretion rate fluctuations in the disc
(Arévalo & Uttley 2006; Wilkinson & Uttley 2009; Uttley et al.
2011). If the energy released from accretion is dissipated in the
corona (e.g. through magnetic field lines), fluctuations in the disc
could cause correlated variability in the corona. Our analysis of
the hard lag spectrum is consistent with this model. We find zero
lags with respect to the reference band (0.3–0.8 keV) at energies
below 1 keV (where the blackbody is appreciable), and above 1 keV,
where the power law begins to dominate, we compute a lag behind
the reference of 200 up to 600 s. Considering the effect of dilution
in our simulations, we find that the intrinsic time delays are likely
to be greater (∼400 to ∼1000 s).

Figure 8. Monte Carlo simulations of the low- and high-frequency lag-
energy spectrum (black dashed lines) where the weighting of the signal
from the blackbody, power-law and reflection components is determined by
their fractional contribution to the time-integrated energy spectrum. Time
delays between all components are constant.

Furthermore, our frequency-resolved analysis of the low-
frequency lag-energy spectrum (top panel, Fig. 2) shows that for
variations on longer time-scales (‘very low’ frequencies, ν = [0.5–
1.65] × 10−4 Hz), the blackbody component contributes less. These
very low frequency variations presumably originate from further re-
gions from the centre, where the temperature of the disc is cooler,
and may be out of the spectral sensitivity of XMM–Newton. At
higher frequencies, (ν = [1.65–5.44] × 10−4 Hz), the variations
originate closer in, where the disc is hotter, and therefore, the con-
tribution from the blackbody is greater. Our simulations also confirm
that if we increase the fractional contribution of the blackbody (as
we expect for smaller radii in a Shakura–Sunyaev disc), we de-
scribe the general shape of the lag-energy spectrum for the ‘low’
frequencies in the top panel Fig. 2.

The low-frequency lag spectrum shows a steady increase above
1 keV. This upward trend has been observed in stellar mass black
holes, such as Cyg X-1 (Nowak et al. 1999). Kotov et al. (2001)
argued that these lags could be due to radial dependence of the spec-
tral index, in which it is hardest in the innermost regions, and be-
comes softer at further distances. Perturbations in the accretion flow
that are introduced at different radii (and therefore different time-
scales) propagate inwards on diffusion time-scales, which cause
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Figure 9. Monte Carlo simulations for the high-frequency lag spectrum.
This figure has the same model as the bottom panel of Fig. 8; however, we
now account for a faster response from the red wing of the Fe Kα line. In our
model, the red wing of the line responds 15 s after the continuum emission,
while the bulk of the reflected emission responds 80 s after the continuum.

the observed power-law shape of the lag spectrum. This model for
Galactic black holes can also explain the upward trend seen in the
lag spectrum of 1H0707−495. The data are well described by our
simulations, which follow the Kotov model of the soft power law
responding first followed by the hard power law from the innermost
regions.

Finally, this interpretation of an extended corona is consistent
with relativistic models by Wilkins & Fabian (2011) that show that
a majority of the power law comes from a small region within 5rg,
while the rest comes from further out.

6.2 The high-frequency lags

The negative lags at high frequencies have been explained as the
light travel time between continuum emission produced in the
corona and reflected emission from the inner regions of the disc.
The soft lag spectrum in the bottom panel of Fig. 2(b) is generally
consistent with this model in that variations at energies dominated
by the reflection spectrum are temporally coincident with those of
the reference band, while the energies dominated by the power-law
component lead to those variations. This result is consistent with
previous results, and now with the new long data set, we are able
to define the lag spectrum much more clearly, revealing structure at
the Fe Kα line.

An important result from the simulations in Fig. 8 is to show
that the actual time delays between the power-law emission and
the reflection are not necessarily the same as the lags we measure
because of the effect of dilution. We find that for much of the
reflection, the actual light travel lag is more on the order of 80 s,
corresponding to a coronal height of ∼4 rg (assuming a black hole
mass ∼2 × 106 M
). At 3–4 keV, the red wing of the Fe Kα line,
we find that the light travel time is ∼15 s, corresponding to emission
from within 1 rg of the event horizon. Future work using realistic
transfer functions, which take into account the spatial extent of the
source and the inclination of the disc, will improve our soft lag
spectral models, and give us a better understanding of the geometry
of the innermost regions closest to the black hole.

7 C O N C L U S I O N S

We have presented the timing analysis of 1H0707−495 using 1.3 Ms
of data taken over 10 years with XMM–Newton. We have simulated
the lag spectra using a model that accounts for dilution from differ-
ent spectral components in calculating the lag. This simple model
for the hard and soft lag spectra shows complicated features that can
be explained by reflection. We have also shown through an anal-
ysis of the covariance spectrum and the time-integrated spectrum
that there is evidence for a more complicated continuum emitting
region, which produces a harder power law closer to the centre and
a softer power law at larger radii. Further work needs to be done
to understand the complexities of the power-law emitting region.
This and future work with more realistic transfer functions for the
response of the accretion disc will be beneficial in uncovering the
precise origin of the X-ray emission in the local environments of
supermassive black holes.
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Böck M., 2011, MNRAS, 414, L60

 at U
niversiteit van A

m
sterdam

 on July 3, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


2804 E. Kara et al.

Vaughan B. A., Nowak M. A., 1997, ApJ, 474, L43
Wilkins D. R., Fabian A. C., 2011, MNRAS, 414, 1269
Wilkinson T., Uttley P., 2009, MNRAS, 397, 666
Zoghbi A., Fabian A. C., 2011, MNRAS, 418, 2642
Zoghbi A., Fabian A. C., Uttley P., Miniutti G., Gallo L. C., Reynolds C. S.,

Miller J. M., Ponti G., 2010, MNRAS, 401, 2419
Zoghbi A., Uttley P., Fabian A. C., 2011, MNRAS, 412, 59
Zoghbi A., Fabian A. C., Reynolds C. S., Cackett E. M., 2012, MNRAS,

422, 129

A P P E N D I X A : C H E C K I N G TH E BAC K G RO U N D
F O R L AG S

To ensure that the lags in Fig. 1 are intrinsic to the source, we
replicated the analysis on background light curves, and found no
significant lag. The same Fourier analysis, as described in the pre-
vious section, was performed using the hard and soft background
light curves of the 14 observations. The results are shown in Fig.
A1. The general shape of the background lag-frequency spectrum
is similar to that of the source, but the amplitude of the lags is sig-
nificantly smaller. This could perhaps be caused by contamination
of the background by source photons. A complete study of these
mild background fluctuations is beyond the scope of this paper,
but we do conclude that the lags seen in Fig. 1 are intrinsic to the
source.

Figure A1. Background lag-frequency spectrum in black, with source lag-
frequency from Fig. 1 in grey for reference. While the general shape of the
source and background lag-frequency spectra are similar, the background
lags are not significant. We perform this background analysis to confirm that
the lags in Fig. 1 are intrinsic to the source.
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