604 research outputs found

    CLASH: z ∼ 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7−4431

    Get PDF
    We present a quintuply lensed z ∼ 6 candidate discovered in the field of the galaxy cluster RXC J2248.7−4431 (z ∼ 0.348) targeted within the Cluster Lensing and Supernova survey with Hubble (CLASH) and selected in the deep Hubble Space Telescope (HST) frontier fields survey. Thanks to the CLASH 16-band HST imaging, we identify the quintuply lensed z ∼ 6 candidate as an optical dropout in the inner region of the cluster, the brightest image having mag_(AB) = 24.8 ± 0.1 in the f105w filter. We perform a detailed photometric analysis to verify its high-z and lensed nature. We get as photometric redshift z_(ph) ∼ 5.9, and given the extended nature and NIR colours of the lensed images, we rule out low-z early-type and galactic star contaminants. We perform a strong lensing analysis of the cluster, using 13 families of multiple lensed images identified in the HST images. Our final best model predicts the high-z quintuply lensed system with a position accuracy of 0.8 arcsec. The magnifications of the five images are between 2.2 and 8.3, which leads to a delensed UV luminosity of L_(1600)∼0.5L^∗_(1600) at z = 6. We also estimate the UV slope from the observed NIR colours, finding a steep β = −2.89 ± 0.38. We use singular and composite stellar population SEDs to fit the photometry of the high-z candidate, and we conclude that it is a young (age <300 Myr) galaxy with mass of M ∼ 10^8 M_⊙, subsolar metallicity (Z < 0.2 Z_⊙) and low dust content (A_V ∼ 0.2–0.4)

    "Refsdal" meets Popper: comparing predictions of the re-appearance of the multiply imaged supernova behind MACSJ1149.5+2223

    Get PDF
    Supernova "Refsdal," multiply imaged by cluster MACS1149.5+2223, represents a rare opportunity to make a true blind test of model predictions in extragalactic astronomy, on a timescale that is short compared to a human lifetime. In order to take advantage of this event, we produced seven gravitational lens models with five independent methods, based on Hubble Space Telescope (HST) Hubble Frontier Field images, along with extensive spectroscopic follow-up observations by HST, the Very Large and the Keck Telescopes. We compare the model predictions and show that they agree reasonably well with the measured time delays and magnification ratios between the known images, even though these quantities were not used as input. This agreement is encouraging, considering that the models only provide statistical uncertainties, and do not include additional sources of uncertainties such as structure along the line of sight, cosmology, and the mass sheet degeneracy. We then present the model predictions for the other appearances of supernova "Refsdal." A future image will reach its peak in the first half of 2016, while another image appeared between 1994 and 2004. The past image would have been too faint to be detected in existing archival images. The future image should be approximately one-third as bright as the brightest known image (i.e., H_(AB) ≈ 25.7 mag at peak and H_(AB) ≈ 26.7 mag six months before peak), and thus detectable in single-orbit HST images. We will find out soon whether our predictions are correct

    CLASH-VLT: Substructure in the galaxy cluster MACS J1206.2-0847 from kinematics of galaxy populations

    Get PDF
    Aims. In the effort to understand the link between the structure of galaxy clusters and their galaxy populations, we focus on MACS J1206.2-0847 at z ~ 0.44 and probe its substructure in the projected phase space through the spectrophotometric properties of a large number of galaxies from the CLASH-VLT survey. Methods. Our analysis is mainly based on an extensive spectroscopic dataset of 445 member galaxies, mostly acquired with VIMOS at VLT as part of our ESO Large Programme, sampling the cluster out to a radius ~2R_(200) (4 h_(70)^(-1) Mpc). We classify 412 galaxies as passive, with strong Hδ absorption (red and blue galaxies), and with emission lines from weak to very strong. A number of tests for substructure detection are applied to analyze the galaxy distribution in the velocity space, in 2D space, and in 3D projected phase-space. Results. Studied in its entirety, the cluster appears as a large-scale relaxed system with a few secondary, minor overdensities in 2D distribution. We detect no velocity gradients or evidence of deviations in local mean velocities. The main feature is the WNW-ESE elongation. The analysis of galaxy populations per spectral class highlights a more complex scenario. The passive galaxies and red strong Hδ galaxies trace the cluster center and the WNW-ESE elongated structure. The red strong Hδ galaxies also mark a secondary, dense peak ~2 h_(70)^(-1) Mpcat ESE. The emission line galaxies cluster in several loose structures, mostly outside R_(200). Two of these structures are also detected through our 3D analysis. The observational scenario agrees with MACS J1206.2-0847 having WNW-ESE as the direction of the main cluster accretion, traced by passive galaxies and red strong Hδ galaxies. The red strong Hδ galaxies, interpreted as poststarburst galaxies, date a likely important event 1−2 Gyr before the epoch of observation. The emission line galaxies trace a secondary, ongoing infall where groups are accreted along several directions

    Evidence for Ubiquitous High-equivalent-width Nebular Emission in z ~ 7 Galaxies: Toward a Clean Measurement of the Specific Star-formation Rate Using a Sample of Bright, Magnified Galaxies

    Get PDF
    Growing observational evidence indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z ~ 5-7 galaxies. This line emission makes z ~ 5-7 galaxies appear more massive, with lower specific star-formation rates (sSFRs). However, corrections for this line emission have been difficult to perform reliably because of huge uncertainties on the strength of such emission at z ≳ 5.5. In this paper, we present the most direct observational evidence thus far for ubiquitous high-equivalent-width (EW) [O III] + Hβ line emission in Lyman-break galaxies at z ~ 7, and we present a strategy for an improved measurement of the sSFR at z ~ 7. We accomplish this through the selection of bright galaxies in the narrow redshift window z ~ 6.6-7.0 where the Spitzer/Infrared Array Camera (IRAC) 4.5 μm flux provides a clean measurement of the stellar continuum light, in contrast with the 3.6 μm flux, which is contaminated by the prominent [O III] + Hβ lines. To ensure a high signal-to-noise ratio for our IRAC flux measurements, we consider only the brightest (H_(160) < 26 mag) magnified galaxies we have identified behind galaxy clusters. It is remarkable that the mean rest-frame optical color for our bright seven-source sample is very blue, [3.6]-[4.5] = –0.9 ± 0.3. Such blue colors cannot be explained by the stellar continuum light and require that the rest-frame EW of [O III] + Hβ is greater than 637 Å for the average source. The four bluest sources from our seven-source sample require an even more extreme EW of 1582 Å. We can also set a robust lower limit of ≳ 4 Gyr^(–1) on the sSFR of our sample based on the mean spectral energy distribution

    CLASH-VLT: Dissecting the Frontier Fields Galaxy Cluster MACS J0416.1-2403 with ∼800 Spectra of Member Galaxies

    Get PDF
    We present VIMOS-Very Large Telescope (VLT) spectroscopy of the Frontier Fields cluster MACS J0416.1-2403 (z = 0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts over ~600 arcmin^2, including ~800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to ~2.2 r _(200) (~4 Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster (M _(200) ~ 0.9 × 10^(15) M_⊙ and σ_(V,r200) ~ 1000 km s^(−1)) presenting two major features: (i) a bimodal velocity distribution, showing two central peaks separated by ΔV _(rf) ~ 1100 km s^(−1) with comparable galaxy content and velocity dispersion, and (ii) a projected elongation of the main substructures along the NE–SW direction, with a prominent sub-clump ~600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low-mass structure at z ~ 0.390, ~10' south of the cluster center, projected at ~3 Mpc, with a relative line-of-sight velocity of ΔV_(rf) ~ −1700 km s^(−1). The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the "universal" NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal an overall complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in agreement with recent findings from radio and deep X-ray data. In this article, we also release the entire redshift catalog of 4386 sources in the field of this cluster, which includes 60 identified Chandra X-ray sources and 105 JVLA radio sources

    Comparison of an X-ray selected sample of massive lensing clusters with the MareNostrum Universe LCDM simulation

    Full text link
    A long-standing problem of strong lensing by galaxy clusters regards the observed high rate of giant gravitational arcs as compared to the predictions in the framework of the "standard" cosmological model. Recently, few other inconsistencies between theoretical expectations and observations have been claimed which regard the large size of the Einstein rings and the high concentrations of few clusters with strong lensing features. All of these problems consistently indicate that observed galaxy clusters may be gravitational lenses stronger than expected. We use clusters extracted from the MareNostrum Universe to build up mock catalogs of galaxy clusters selected through their X-ray flux. We use these objects to estimate the probability distributions of lensing cross sections, Einstein rings, and concentrations for the sample of 12 MACS clusters at z>0.5z>0.5 presented in Ebeling et al. (2007) and discussed in Zitrin et al. (2010). We find that simulated clusters produce 50\sim 50% less arcs than observed clusters do. The medians of the distributions of the Einstein ring sizes differ by 25\sim 25% between simulations and observations. We estimate that, due to cluster triaxiality and orientation biases affecting the lenses with the largest cross sections, the concentrations of the individual MACS clusters inferred from the lensing analysis should be up to a factor of 2\sim 2 larger than expected from the Λ\LambdaCDM model. The arc statistics, the Einstein ring, and the concentration problems in strong lensing clusters are mitigated but not solved on the basis of our analysis. Nevertheless, due to the lack of redshifts for most of the multiple image systems used for modeling the MACS clusters, the results of this work will need to be verified with additional data. The upcoming CLASH program will provide an ideal sample for extending our comparison (abridged).Comment: 11 pages, 9 figures, accepted for publication on A&

    Quantifying the UV-continuum slopes of galaxies to z ˜ 10 using deep Hubble+Spitzer/IRAC observations

    Get PDF
    Measurements of the UV-continuum slopes β provide valuable information on the physical properties of galaxies forming in the early universe, probing the dust reddening, age, metal content, and even the escape fraction. While constraints on these slopes generally become more challenging at higher redshifts as the UV-continuum shifts out of the Hubble Space Telescope bands (particularly at z > 7), such a characterization actually becomes abruptly easier for galaxies in the redshift window z = 9.5-10.5 due to the Spitzer/Infrared Array Camera 3.6 μm-band probing the rest-UV continuum and the long wavelength baseline between this Spitzer band and the Hubble Hf160w band. Higher S/N constraints on β are possible at z ˜ 10 than at z = 8. Here, we take advantage of this opportunity and five recently discovered bright z = 9.5-10.5 galaxies to present the first measurements of the mean β for a multi-object sample of galaxy candidates at z ˜ 10. We find the measured βobs's of these candidates are -2.1 ± 0.3 ± 0.2 (random and systematic), only slightly bluer than the measured β's (βobs ≈ -1.7) at 3.5 < z < 7.5 for galaxies of similar luminosities. Small increases in the stellar ages, metallicities, and dust content of the galaxy population from z ˜ 10 to z ˜ 7 could easily explain the apparent evolution in β
    corecore