14 research outputs found
Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3
We report on a search for gravitational waves from coalescing compact
binaries using LIGO and Virgo observations between July 7, 2009 and October 20,
2010. We searched for signals from binaries with total mass between 2 and 25
solar masses; this includes binary neutron stars, binary black holes, and
binaries consisting of a black hole and neutron star. The detectors were
sensitive to systems up to 40 Mpc distant for binary neutron stars, and further
for higher mass systems. No gravitational-wave signals were detected. We report
upper limits on the rate of compact binary coalescence as a function of total
mass, including the results from previous LIGO and Virgo observations. The
cumulative 90%-confidence rate upper limits of the binary coalescence of binary
neutron star, neutron star- black hole and binary black hole systems are 1.3 x
10^{-4}, 3.1 x 10^{-5} and 6.4 x 10^{-6} Mpc^{-3}yr^{-1}, respectively. These
upper limits are up to a factor 1.4 lower than previously derived limits. We
also report on results from a blind injection challenge.Comment: 11 pages, 5 figures. For a repository of data used in the
publication, go to:
. Also see the
announcement for this paper on ligo.org at:
<http://www.ligo.org/science/Publication-S6CBCLowMass/index.php
Virgo gravitational wave detector: Results and perspectives
The Virgo detector reached during the past science run a sensitivity very close to the design one. During the last year the detector has been improved by suspending the main interferometer mirrors with monolithic fibers, with the goal
of reducing the thermal noise contribution and testing the new technology. At the same time the design of the next detector improvements are on-going and they will be implemented during the construction of Advanced Virgo
All-sky Search for Periodic Gravitational Waves in the Full S5 LIGO Data
We report on an all-sky search for periodic gravitational waves in the
frequency band 50-800 Hz and with the frequency time derivative in the range of
0 through -6e-9 Hz/s. Such a signal could be produced by a nearby spinning and
slightly non-axisymmetric isolated neutron star in our galaxy. After recent
improvements in the search program that yielded a 10x increase in computational
efficiency, we have searched in two years of data collected during LIGO's fifth
science run and have obtained the most sensitive all-sky upper limits on
gravitational wave strain to date. Near 150 Hz our upper limit on worst-case
linearly polarized strain amplitude is 1e-24, while at the high end of
our frequency range we achieve a worst-case upper limit of 3.8e-24 for all
polarizations and sky locations. These results constitute a factor of two
improvement upon previously published data. A new detection pipeline utilizing
a Loosely Coherent algorithm was able to follow up weaker outliers, increasing
the volume of space where signals can be detected by a factor of 10, but has
not revealed any gravitational wave signals. The pipeline has been tested for
robustness with respect to deviations from the model of an isolated neutron
star, such as caused by a low-mass or long-period binary companion.Comment: 18 page
The NoEMi (Noise Frequency Event Miner) framework
The data collected by a gravitational wave interferometer are inevitably affected by instrumental artefacts and environmental disturbances. In particular, for continuous gravitational wave (CW) studies it is important to detect narrow-band disturbances (the so-called "noise lines") during science runs, and to help scientists to identify and possibly remove or mitigate their sources. The NoEMi (Noise Frequency Event Miner) framework exploits some of the algorithms implemented for the CW search to identify, on a daily basis, the frequency lines observed in the Virgo science data and in a subset of the environmental sensors, looking for lines that match in frequency. A line tracker algorithm reconstructs the lines over time, and stores them in a database, which is made accesible via a web interface. We describe the workflow of NoEMi, providing examples of its use for the investigation of noise lines in past Virgo runs (VSR2, VSR3) and in the most recent run (VSR4)
The NoEMi (Noise Frequency Event Miner) framework
The data collected by a gravitational wave interferometer are inevitably affected by instrumental artefacts and environmental disturbances. In particular, for continuous gravitational wave (CW) studies it is important to detect narrow-band disturbances (the so-called "noise lines") during science runs, and to help scientists to identify and possibly remove or mitigate their sources. The NoEMi (Noise Frequency Event Miner) framework exploits some of the algorithms implemented for the CW search to identify, on a daily basis, the frequency lines observed in the Virgo science data and in a subset of the environmental sensors, looking for lines that match in frequency. A line tracker algorithm reconstructs the lines over time, and stores them in a database, which is made accesible via a web interface. We describe the workflow of NoEMi, providing examples of its use for the investigation of noise lines in past Virgo runs (VSR2, VSR3) and in the most recent run (VSR4)
Virgo gravitational wave detector: Results and perspectives
The Virgo detector reached during the past science run a sensitivity very close to the design one. During the last year the detector has been improved by suspending the main interferometer mirrors with monolithic fibers, with the goal of reducing the thermal noise contribution and testing the new technology. At the same time the design of the next detector improvements are on-going and they will be implemented during the construction of Advanced Virgo. © Società Italiana di Fisica
Noise monitor tools and their application to Virgo data
The understanding of noise in interferometric gravitational wave detectors is fundamental in terms of both enabling prompt reactions in the mitigation of noise disturbances and in the establishment of appropriate data-cleaning strategies. Monitoring tools to perform online and offline noise analysis in areas such as transient signal detection, line identification algorithms and coherence are used to characterise the Virgo detector noise. In this paper, we describe the framework into which these tools are integrated - the Noise Monitor Application Programming Interface (NMAPI) - and provide examples of its application
Noise monitor tools and their application to Virgo data
International audienceThe understanding of noise in interferometric gravitational wave detectors is fundamental in terms of both enabling prompt reactions in the mitigation of noise disturbances and in the establishment of appropriate data-cleaning strategies. Monitoring tools to perform online and offline noise analysis in areas such as transient signal detection, line identification algorithms and coherence are used to characterise the Virgo detector noise. In this paper, we describe the framework into which these tools are integrated - the Noise Monitor Application Programming Interface (NMAPI) - and provide examples of its application
The NoEMi (Noise Frequency Event Miner) framework
International audienceThe data collected by a gravitational wave interferometer are inevitably affected by instrumental artefacts and environmental disturbances. In particular, for continuous gravitational wave (CW) studies it is important to detect narrow-band disturbances (the so-called "noise lines") during science runs, and to help scientists to identify and possibly remove or mitigate their sources. The NoEMi (Noise Frequency Event Miner) framework exploits some of the algorithms implemented for the CW search to identify, on a daily basis, the frequency lines observed in the Virgo science data and in a subset of the environmental sensors, looking for lines that match in frequency. A line tracker algorithm reconstructs the lines over time, and stores them in a database, which is made accesible via a web interface. We describe the workflow of NoEMi, providing examples of its use for the investigation of noise lines in past Virgo runs (VSR2, VSR3) and in the most recent run (VSR4)