236 research outputs found

    Non-invasive mechanical ventilation for diagnostic bronchoscopy using a new face mask: an observational feasibility study

    Get PDF
    Contains fulltext : 89809.pdf (publisher's version ) (Closed access)PURPOSE: Bronchoscopy is an indispensable tool for invasive pulmonary evaluation with high diagnostic yield and low incidence of major complications. However, hypoxemia increases the risk of complications, in particular after bronchoalveolar lavage. Non-invasive positive pressure ventilation may prevent hypoxemia associated with bronchoalveolar lavage. The purpose of this study is to present a modified total face mask to aid bronchoscopy during non-invasive positive pressure ventilation. METHODS: A commercially available full face mask was modified to allow introduction of the bronchoscope without interfering with the ventilator circuit. Bronchoscopy with bronchoalveolar lavage was performed in 12 hypoxemic non-ICU patients during non-invasive positive pressure ventilation in the ICU. Results : Patients had severely impaired oxygen uptake as indicated by PaO(2)/FiO(2) ratio 192 +/- 23 mmHg before bronchoscopy. Oxygenation improved after initiation of non-invasive positive pressure ventilation. In all patients the procedure could be completed without subsequent complications, although in one patient SpO(2) decreased until 86% during bronchoscopy. A microbiological diagnosis could be established in 8 of 12 patients with suspected for infection. CONCLUSIONS: Our modified face mask for non-invasive positive pressure ventilation is a valuable tool to aid diagnostic bronchoscopy in hypoxemic patients.1 januari 201

    Increased Levels of Leukocyte-Derived MMP-9 in Patients with Stable Angina Pectoris

    Get PDF
    Objective: There is a growing interest for matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in plasma as novel biomarkers in coronary artery disease (CAD). We aimed to identify the sources of MMP-8, MMP-9, TIMP-1 and TIMP-2 among peripheral blood cells and further explore whether gene expression or protein release was altered in patients with stable angina pectoris (SA). Methods: In total, plasma MMP-9 was measured in 44 SA patients and 47 healthy controls. From 10 patients and 10 controls, peripheral blood mononuclear cells (PBMC) and neutrophils were isolated and stimulated ex vivo. MMPs, TIMPs and myeloperoxidase were measured in plasma and supernatants by ELISA. The corresponding gene expression was measured by real-time PCR. Results: Neutrophils were the dominant source of MMP-8 and MMP-9. Upon moderate stimulation with IL-8, the neutrophil release of MMP-9 was higher in the SA patients compared with controls (p,0.05). In PBMC, the TIMP-1 and MMP-9 mRNA expression was higher in SA patients compared with controls, p,0.01 and 0.05, respectively. There were no differences in plasma levels between patients and controls except for TIMP-2, which was lower in patients, p,0.01. Conclusion: Measurements of MMPs and TIMPs in plasma may be of limited use. Despite similar plasma levels in SA patients and controls, the leukocyte-derived MMP-9 and TIMP-1 are significantly altered in patients. The findings indicate that th

    Early Elevation of Matrix Metalloproteinase-8 and -9 in Pediatric ARDS Is Associated with an Increased Risk of Prolonged Mechanical Ventilation

    Get PDF
    BACKGROUND: Matrix metalloproteinases (MMP) -8 and -9 may play key roles in the modulation of neutrophilic lung inflammation seen in pediatric Acute Respiratory Distress Syndrome (ARDS). We aimed to perform a comprehensive analysis of MMP-8 and MMP-9 activity in tracheal aspirates of pediatric ARDS patients compared with non-ARDS controls, testing whether increased MMP-8 and -9 activities were associated with clinical outcomes. METHODS: Tracheal aspirates were collected from 33 pediatric ARDS patients and 21 non-ARDS controls at 48 hours of intubation, and serially for those who remained intubated greater than five days. MMPs, tissue inhibitor of metalloproteinases (TIMPs), human neutrophil elastase (HNE) and myeloperoxidase (MPO) activity were measured by ELISA, and correlated with clinical indicators of disease severity such as PRISM (Pediatric Risk of Mortality) scores, oxygen index (OI), multi-organ system failure (MOSF) and clinical outcome measures including length of intubation, ventilator-free days (VFDs) and mortality in the Pediatric Intensive Care Unit (PICU). RESULTS: Active MMP-9 was elevated early in pediatric ARDS subjects compared to non-ARDS controls. Higher MMP-8 and active MMP-9 levels at 48 hours correlated with a longer course of mechanical ventilation (r = 0.41, p = 0.018 and r = 0.75, p<0.001; respectively) and fewer number of VFDs (r = -0.43, p = 0.013 and r = -0.76, p<0.001; respectively), independent of age, gender and severity of illness. Patients with the highest number of ventilator days had the highest levels of active MMP-9. MMP-9 and to a lesser extent MMP-8 activities in tracheal aspirates from ARDS subjects were sensitive to blockade by small molecule inhibitors. CONCLUSIONS: Higher MMP-8 and active MMP-9 levels at 48 hours of disease onset are associated with a longer duration of mechanical ventilation and fewer ventilator-free days among pediatric patients with ARDS. Together, these results identify early biomarkers predictive of disease course and potential therapeutic targets for this life threatening disease

    Glucocorticosteroids Differentially Regulate MMP-9 and Neutrophil Elastase in COPD

    Get PDF
    Background: Chronic Obstructive Pulmonary Disease (COPD) is currently the fifth leading cause of death worldwide. Neutrophilic inflammation is prominent, worsened during infective exacerbations and is refractory to glucocorticosteroids (GCs). Deregulated neutrophilic inflammation can cause excessive matrix degradation through proteinase release. Gelatinase and azurophilic granules within neutrophils are a major source of matrix metalloproteinase (MMP)-9 and neutrophil elastase (NE), respectively, which are elevated in COPD. Methods: Secreted MMP-9 and NE activity in BALF were stratified according to GOLD severity stages. The regulation of secreted NE and MMP-9 in isolated blood neutrophils was investigated using a pharmacological approach. In vivo release of MMP-9 and NE in mice exposed to cigarette smoke (CS) and/or the TLR agonist lipopolysaccharide (LPS) in the presence of dexamethasone (Dex) was investigated. Results: Neutrophil activation as assessed by NE release was increased in severe COPD (36-fold, GOLD II vs. IV). MMP-9 levels (8-fold) and activity (21-fold) were also elevated in severe COPD, and this activity was strongly associated with BALF neutrophils (r = 0.92, p &lt; 0.001), but not macrophages (r = 0.48, p = 0.13). In vitro, release of NE and MMP-9 from fMLP stimulated blood neutrophils was insensitive to Dex and attenuated by the PI3K inhibitor, wortmannin. In vivo, GC resistant neutrophil activation (NE release) was only seen in mice exposed to CS and LPS. In addition, GC refractory MMP-9 expression was only associated with neutrophil activation. Conclusions: As neutrophils become activated with increasing COPD severity, they become an important source of NE and MMP-9 activity, which secrete proteinases independently of TIMPs. Furthermore, as NE and MMP-9 release was resistant to GC, targeting of the PI3K pathway may offer an alternative pathway to combating this proteinase imbalance in severe COPD

    Innate recognition of apoptotic cells:novel apoptotic cell-associated molecular patterns revealed by crossreactivity of anti-LPS antibodies

    Get PDF
    Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells-apoptotic cell-associated molecular patterns (ACAMPs)-that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V-and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs

    Leukotriene biosynthesis inhibition ameliorates acute lung injury following hemorrhagic shock in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic shock followed by resuscitation is conceived as an insult frequently induces a systemic inflammatory response syndrome and oxidative stress that results in multiple-organ dysfunction syndrome including acute lung injury. MK-886 is a leukotriene biosynthesis inhibitor exerts an anti inflammatory and antioxidant activity.</p> <p>Objectives</p> <p>The objective of present study was to assess the possible protective effect of MK-886 against hemorrhagic shock-induced acute lung injury via interfering with inflammatory and oxidative pathways.</p> <p>Materials and methods</p> <p>Eighteen adult Albino rats were assigned to three groups each containing six rats: group I, sham group, rats underwent all surgical instrumentation but neither hemorrhagic shock nor resuscitation was done; group II, Rats underwent hemorrhagic shock (HS) for 1 hr then resuscitated with Ringer's lactate (1 hr) (induced untreated group, HS); group III, HS + MK-886 (0.6 mg/kg i.p. injection 30 min before the induction of HS, and the same dose was repeated just before reperfusion period). At the end of experiment (2 hr after completion of resuscitation), blood samples were collected for measurement of serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The trachea was then isolated and bronchoalveolar lavage fluid (BALF) was carried out for measurement of leukotriene B<sub>4 </sub>(LTB<sub>4</sub>), leukotriene C<sub>4 </sub>(LTC<sub>4</sub>) and total protein. The lungs were harvested, excised and the left lung was homogenized for measurement of malondialdehyde (MDA) and reduced glutathione (GSH) and the right lung was fixed in 10% formalin for histological examination.</p> <p>Results</p> <p>MK-886 treatment significantly reduced the total lung injury score compared with the HS group (<it>P </it>< 0.05). MK-886 also significantly decreased serum TNF-α & IL-6; lung MDA; BALF LTB<sub>4</sub>, LTC<sub>4 </sub>& total protein compared with the HS group (<it>P </it>< 0.05). MK-886 treatment significantly prevented the decrease in the lung GSH levels compared with the HS group (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>The results of the present study reveal that MK-886 may ameliorate lung injury in shocked rats via interfering with inflammatory and oxidative pathways implicating the role of leukotrienes in the pathogenesis of hemorrhagic shock-induced lung inflammation.</p

    Year in review in Intensive Care Medicine, 2008: II. Experimental, acute respiratory failure and ARDS, mechanical ventilation and endotracheal intubation

    Get PDF
    SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore