669 research outputs found

    Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide - Part 1: Immersion freezing

    Get PDF
    Desert dust is one of the most abundant ice nucleating particle types in the atmosphere. Traditionally, clay minerals were assumed to determine the ice nucleation ability of desert dust and constituted the focus of ice nucleation studies over several decades. Recently some feldspar species were identified to be ice active at much higher temperatures than clay minerals, redirecting studies to investigate the contribution of feldspar to ice nucleation on desert dust. However, so far no study has shown the atmospheric relevance of this mineral phase. For this study four dust samples were collected after airborne transport in the troposphere from the Sahara to different locations (Crete, the Peloponnese, Canary Islands, and the Sinai Peninsula). Additionally, 11 dust samples were collected from the surface from nine of the biggest deserts worldwide. The samples were used to study the ice nucleation behavior specific to different desert dusts. Furthermore, we investigated how representative surface-collected dust is for the atmosphere by comparing to the ice nucleation activity of the airborne samples. We used the IMCA-ZINC setup to form droplets on single aerosol particles which were subsequently exposed to temperatures between 233 and 250 K. Dust particles were collected in parallel on filters for offline cold-stage ice nucleation experiments at 253–263 K. To help the interpretation of the ice nucleation experiments the mineralogical composition of the dusts was investigated. We find that a higher ice nucleation activity in a given sample at 253 K can be attributed to the K-feldspar content present in this sample, whereas at temperatures between 238 and 245 K it is attributed to the sum of feldspar and quartz content present. A high clay content, in contrast, is associated with lower ice nucleation activity. This confirms the importance of feldspar above 250 K and the role of quartz and feldspars determining the ice nucleation activities at lower temperatures as found by earlier studies for monomineral dusts. The airborne samples show on average a lower ice nucleation activity than the surface-collected ones. Furthermore, we find that under certain conditions milling can lead to a decrease in the ice nucleation ability of polymineral samples due to the different hardness and cleavage of individual mineral phases causing an increase of minerals with low ice nucleation ability in the atmospherically relevant size fraction. Comparison of our data set to an existing desert dust parameterization confirms its applicability for climate models. Our results suggest that for an improved prediction of the ice nucleation ability of desert dust in the atmosphere, the modeling of emission and atmospheric transport of the feldspar and quartz mineral phases would be key, while other minerals are only of minor importance

    Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Get PDF
    Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T) and relative humidity (RH), as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulfate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long-range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 T ns) are reported and observed to increase as a function of decreasing temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. We also present the first results to show a suppression of heterogeneous ice nucleation activity without the condensation of a coating of (in)organic material. In immersion mode, low ozone exposed Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka, whereas high ozone exposed ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, whereas high ozone exposed ATD had ice active fractions up to a factor of 4 lower than untreated ATD. From our results, we derive and present parameterizations in terms of ns(T) that can be used in models to predict ice nuclei concentrations based on available aerosol surface area

    A comparison of different Malaise trap types

    Full text link
    Recent reports on insect decline have highlighted the need for long-term data on insect communities towards identifying their trends and drivers. With the launch of many new insect monitoring schemes to investigate insect communities over large spatial and temporal scales, Malaise traps have become one of the most important tools due to the broad spectrum of species collected and reduced capture bias through passive sampling of insects day and night. However, Malaise traps can vary in size, shape, and colour, and it is unknown how these differences affect biomass, species richness, and composition of trap catch, making it difficult to compare results between studies. We compared five Malaise trap types (three variations of the Townes and two variations of the Bartak Malaise trap) to determine their effects on biomass and species richness as identified by metabarcoding. Insect biomass varied by 20%–55%, not strictly following trap size but varying with trap type. Total species richness was 20%–38% higher in the three Townes trap models compared to the Bartak traps. Bartak traps captured lower richness of highly mobile taxa but increased richness of ground-dwelling taxa. The white roofed Townes trap captured a higher richness of pollinators. We find that biomass, total richness, and taxa group specific richness are all sensitive to Malaise trap type. Trap type should be carefully considered and aligned to match monitoring and research questions. Additionally, our estimates of trap type effects can be used to adjust results to facilitate comparisons across studies

    Targeting Androgen Receptor Aberrations in Castration-Resistant Prostate Cancer.

    Get PDF
    Androgen receptor (AR) splice variants (SV) have been implicated in the development of metastatic castration-resistant prostate cancer and resistance to AR targeting therapies, including abiraterone and enzalutamide. Agents targeting AR-SV are urgently needed to test this hypothesis and further improve the outcome of patients suffering from this lethal disease. Clin Cancer Res; 22(17); 4280-2. ©2016 AACRSee related article by Yang et al., p. 4466

    Temperature drives variation in flying insect biomass across a German malaise trap network

    Get PDF
    1. Among the many concerns for biodiversity in the Anthropocene, recent reports of flying insect loss are particularly alarming, given their importance as pollinators, pest control agents, and as a food source. Few insect monitoring programmes cover the large spatial scales required to provide more generalizable estimates of insect responses to global change drivers. 2. We ask how climate and surrounding habitat affect flying insect biomass using data from the first year of a new monitoring network at 84 locations across Germany comprising a spatial gradient of land cover types from protected to urban and crop areas. 3. Flying insect biomass increased linearly with temperature across Germany. However, the effect of temperature on flying insect biomass flipped to negative in the hot months of June and July when local temperatures most exceeded long-term averages. 4. Land cover explained little variation in insect biomass, but biomass was lowest in forests. Grasslands, pastures, and orchards harboured the highest insect biomass. The date of peak biomass was primarily driven by surrounding land cover, with grasslands especially having earlier insect biomass phenologies. 5. Standardised, large-scale monitoring provides key insights into the underlying processes of insect decline and is pivotal for the development of climate-adapted strategies to promote insect diversity. In a temperate climate region, we find that the positive effects of temperature on flying insect biomass diminish in a German summer at locations where temperatures most exceeded long-term averages. Our results highlight the importance of local adaptation in climate change-driven impacts on insect communities

    Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress

    Get PDF
    This is the peer reviewed version of the following article: Vu, H. S., Roth, M. R., Tamura, P., Samarakoon, T., Shiva, S., Honey, S., Lowe, K., Schmelz, E. A., Williams, T. D. and Welti, R. (2014), Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress. Physiol Plantarum, 150: 517–528. doi:10.1111/ppl.12132, which has been published in final form at http://doi.org/10.1111/ppl.12132. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection, and thawing after snap-freezing. Here, lipidomic analysis using mass spectrometry showed that galactose-acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl-galactose components in response to the same stress. Additionally, the composition of the acyl-galactose component of Arabidopsis acMGDG depends on the stress treatment. After sub-lethal freezing treatment, acMGDG contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose-acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses

    Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics

    Get PDF
    Background: Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as biomarkers for diagnosis of prostate cancer. Methodology/Principal Findings: Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) demonstrated that patient and control populations were visually separated by identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid biomarkers were able to predict unknown populations accurately, and this was not influenced by patient's age and race. Three out of 13 lipid classes, phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (ePE) and ether-linked phosphatidylcholine (ePC) could be considered as biomarkers in diagnosis of prostate cancer. Conclusions/Significance: Using lipidomics and bioinformatic and statistical methods, we have identified a few out of hundreds plasma apparent lipid molecular species as biomarkers for diagnosis of prostate cancer with a high sensitivity, specificity and accuracy
    • …
    corecore