81 research outputs found

    Sensitivity and figures of merit for dark energy supernovae surveys

    Get PDF
    Tracking the origin of the accelerating expansion of the Universe remains one of the most challenging research activities today. The final answer will depend on the precision and on the consistency of future data. The sensitivity of future surveys and the control of the errors are crucial. We focus on futur supernovae surveys in the light of the figure of merit defined by the Dark Energy Task Force. We compare different optimisation and emphasize the importance of the understanding of the systematic error level in this approach and their impact on the conclusions. We discuss different representations of the results to distinguish Λ\LambdaCDM from other theoretical models. We conclude that all representations should be controlled through combined analyses and consistency checks to avoid some bias

    A test of the CPL parameterization for rapid dark energy equation of state transitions

    Full text link
    We test the robustness and flexibility of the Chevallier-Polarski-Linder (CPL) parameterization of the Dark Energy equation of state w(z)=w0+waz1+zw(z)=w_0+w_a \frac{z}{1+z} in recovering a four-parameter step-like fiducial model. We constrain the parameter space region of the underlying fiducial model where the CPL parameterization offers a reliable reconstruction. It turns out that non negligible biases leak into the results for recent (z<2.5z<2.5) rapid transitions, but that CPL yields a good reconstruction in all other cases. The presented analysis is performed with supernova Ia data as forecasted for a space mission like SNAP/JDEM, combined with future expectations for the CMB shift parameter RR and the BAO parameter AA.Comment: 8 pages, 6 ps figure

    Prospects for Dark Energy Evolution: a Frequentist Multi-Probe Approach

    Full text link
    A major quest in cosmology is the understanding of the nature of dark energy. It is now well known that a combination of cosmological probes is required to break the underlying degeneracies on cosmological parameters. In this paper, we present a method, based on a frequentist approach, to combine probes without any prior constraints, taking full account of the correlations in the parameters. As an application, a combination of current SNIa and CMB data with an evolving dark energy component is first compared to other analyses. We emphasise the consequences of the implementation of the dark energy perturbations on the result for a time varying equation of state. The impact of future weak lensing surveys on the measurement of dark energy evolution is then studied in combination with future measurements of the cosmic microwave background and type Ia supernovae. We present the combined results for future mid-term and long-term surveys and confirm that the combination with weak lensing is very powerful in breaking parameter degeneracies. A second generation of experiment is however required to achieve a 0.1 error on the parameters describing the evolution of dark energy.Comment: Submitted to Astronomy & Astrophysics 14 pages, 8 figure

    On the determination of the deceleration parameter from Supernovae data

    Full text link
    Supernovae searches have shown that a simple matter-dominated and decelerating universe should be ruled out. However a determination of the present deceleration parameter q0q_0 through a simple kinematical description is not exempt of possible drawbacks. We show that, with a time dependent equation of state for the dark energy, a bias is present for q0q_0 : models which are very far from the so-called Concordance Model can be accommodated by the data and a simple kinematical analysis can lead to wrong conclusions. We present a quantitative treatment of this bias and we present our conclusions when a possible dynamical dark energy is taken into account.Comment: 4 pages, 3 figures, submitte

    Probing Dark Energy with Supernovae : a concordant or a convergent model?

    Full text link
    We present a revised interpretation of recent analysis of supernovae data. We evaluate the effect of the priors on the extraction of the dark energy equation of state. We find that the conclusions depend strongly on the ΩM\Omega_M prior value and on its uncertainty, and show that a biased fitting procedure applied on non concordant simulated data can converge to the "concordance model". Relaxing the prior on ΩM\Omega_M points to other sets of solutions, which are not excluded by observational data.Comment: 1+4 pages, 6 figures, submitted to Phys. Re

    Geometrical tests of cosmological models. I. Probing dark energy using the kinematics of high redshift galaxies

    Full text link
    We suggest to use the observationally measured and theoretically justified correlation between size and rotational velocity of galactic discs as a viable method to select a set of high redshift standard rods which may be used to explore the dark energy content of the universe via the classical angular-diameter test. Here we explore a new strategy for an optimal implementation of this test.We propose to use the rotation speed of high redshift galaxies as a standard size indicator and show how high resolution multi-object spectroscopy and ACS/HST high quality spatial images, may be combined to measure the amplitude of the dark energy density parameter ΩQ, or to constrain the cosmic equation of state parameter for a smooth dark energy component (w = p/ρ, −1 ≀ w < −1/3). Nearly 1300 standard rods with high velocity rotation in the bin V = 200 ± 20 km s−1 are expected in a field of 1 sq. degree and over the redshift baseline 0 < z < 1.4. This sample is sufficient to constrain the cosmic equation of state parameter w at a level of 20% (without priors in the [Ωm,ΩQ] plane) even when the [OII]λ3727 Å linewidth-diameter relationship is calibrated with a scatter of ∌40%. We evaluate how systematics may affect the proposed tests, and find that a linear standard rod evolution, causing galaxy dimensions to be up to 30% smaller at z = 1.5, can be uniquely diagnosed, and will minimally bias the confidence level contours in the [ΩQ, w] plane. Finally, we show how to derive, without a priori knowing the specific functional form of disc evolution, a cosmologyevolution diagram with which it is possible to establish a mapping between different cosmological models and the amount of galaxy disc/luminosity evolution expected at a given redshift

    Seeking Evolution of Dark Energy

    Get PDF
    We study how observationally to distinguish between a cosmological constant (CC) and an evolving dark energy with equation of state ω(Z)\omega(Z). We focus on the value of redshift Z* at which the cosmic late time acceleration begins and aš(Z∗)=0\ddot{a}(Z^{*}) = 0. Four ω(Z)\omega(Z) are studied, including the well-known CPL model and a new model that has advantages when describing the entire expansion era. If dark energy is represented by a CC model with Ï‰â‰Ąâˆ’1\omega \equiv -1, the present ranges for ΩΛ(t0)\Omega_{\Lambda}(t_0) and Ωm(t0)\Omega_m(t_0) imply that Z* = 0.743 with 4% error. We discuss the possible implications of a model independent measurement of Z* with better accuracy.Comment: 9 pages, LaTeX, 5 figure

    Cosmological parameter extraction and biases from type Ia supernova magnitude evolution

    Full text link
    We study different one-parametric models of type Ia Supernova magnitude evolution on cosmic time scales. Constraints on cosmological and Supernova evolution parameters are obtained by combined fits on the actual data coming from Supernovae, the cosmic microwave background, and baryonic acoustic oscillations. We find that data prefer a magnitude evolution such that high-redshift Supernova are brighter than would be expected in a standard cosmos with a dark energy component. Data however are consistent with non-evolving magnitudes at the one-sigma level, except special cases. We simulate a future data scenario where SN magnitude evolution is allowed for, and neglect the possibility of such an evolution in the fit. We find the fiducial models for which the wrong model assumption of non-evolving SN magnitude is not detectable, and for which at the same time biases on the fitted cosmological parameters are introduced. Of the cosmological parameters the overall mass density has the strongest chances to be biased due to the wrong model assumption. Whereas early-epoch models with a magnitude offset ~z^2 show up to be not too dangerous when neglected in the fitting procedure, late epoch models with magnitude offset ~sqrt(z) have high chances to bias the fit results.Comment: 12 pages, 5 figures, 3 tables. Accepted for publication by A&A. Revised version: Corrected Typos, reference added to section

    Constraints on CDM cosmology from galaxy power spectrum, CMB and SNIa evolution

    Full text link
    We examine the constraints that can be obtained on standard cold dark matter models from the most currently used data set: CMB anisotropies, type Ia supernovae and the SDSS luminous red galaxies. We also examine how these constraints are widened when the equation of state parameter ww and the curvature parameter Ωk\Omega_k are left as free parameters. For the Λ\LambdaCDM model, our 'vanilla' model, cosmological parameters are tightly constrained and consistent with current estimates from various methods. When the dark energy parameter ww is free we find that the constraints remain mostly unchanged, i.e. changes are smaller than the 1 sigma uncertainties. Similarly, relaxing the assumption of a flat universe leads to nearly identical constraints on the dark energy density parameter of the universe ΩΛ\Omega_\Lambda , baryon density of the universe Ωb\Omega_b , the optical depth τ\tau, the index of the power spectrum of primordial fluctuations nSn_S, with most one sigma uncertainties better than 5%. More significant changes appear on other parameters: while preferred values are almost unchanged, uncertainties for the physical dark matter density Ωch2\Omega_ch^2, Hubble constant H0H_0 and σ8\sigma_8 are typically twice as large. We found that different methodological approaches on large scale structure estimates lead to appreciable differences in preferred values and uncertainty widths. We also found that possible evolution in SNIa intrinsic luminosity does not alter these constraints by much, except for ww, for which the uncertainty is twice as large. At the same time, this possible evolution is severely constrained. We conclude that systematic uncertainties for some estimated quantities are similar or larger than statistical ones.Comment: Revised version, 9 pages, 8 figures, accepted for publication in A&
    • 

    corecore