96 research outputs found

    Dose-finding study of ibrutinib and venetoclax in relapsed or refractory mantle cell lymphoma

    Get PDF
    Relapsed Mantle cell lymphoma (MCL) is often treated with Bruton\u27s tyrosine kinase inhibitors (BTKi); however, post-BTKi relapse can be challenging. Adding venetoclax (VEN) to ibrutinib (IBR) has shown synergy in preclinical MCL models. Prior MCL studies of the combination show promising efficacy but have conducted limited dose finding. We sought to identify the optimal dosing combination, based on efficacy and toxicity, utilizing a continual reassessment method of 6 combinations of IBR (280 mg, 420 mg, and 560 mg by mouth daily) and VEN (max dose of 200 mg and 400 mg by mouth daily). Eligible participants were not previously exposed to BTKi and not high risk for tumor lysis syndrome (TLS). VEN, initiated first at 100 mg, then at 20 mg by mouth daily after a TLS event, was started prior to adding IBR and ramped-up based on the dose level assigned. Combination treatment continued for six 28-day cycles. Thirty-five participants were enrolled and treated. One TLS event occurred with starting dose of 100 mg VEN; no TLS was seen with 20 mg. The optimal dosing combination was considered to be VEN 200 mg and IBR 420 mg with an overall response rate (ORR) of 93.8% (95% CI: 73.6% to 99.7%) and DLT incidence of 6.2% (95% CI: 0.3% to 26.4%). ORR for all arms was 82.3% (28/34; 95% CI: 65.5% to 93.2%) with a complete response (CR) rate of 42.4% (14/33; 95% CI: 25.5% to 60.8%). A participant was not allocated to IBR 560 mg and VEN 400 mg. ORR benefit was not seen with higher dosing combinations and toxicity was higher; a comparison made within the limitations of small cohorts. Resistance was seen in nearly all arms. This trial was registered at www.clinicaltrials.gov #NCT02419560

    Physical pretreatment of biogenic-rich trommel fines for fast pyrolysis

    Get PDF
    Energy from Waste (EfW) technologies such as fluidized bed fast pyrolysis, are beneficial for both energy generation and waste management. Such technologies, however face significant challenges due to the heterogeneous nature, particularly the high ash contents of some municipal solid waste types e.g. trommel fines. A study of the physical/mechanical and thermal characteristics of these complex wastes is important for two main reasons; (a) to inform the design and operation of pyrolysis systems to handle the characteristics of such waste; (b) to control/modify the characteristics of the waste to fit with existing EFW technologies via appropriate feedstock preparation methods. In this study, the preparation and detailed characterisation of a sample of biogenic-rich trommel fines has been carried out with a view to making the feedstock suitable for fast pyrolysis based on an existing fluidized bed reactor. Results indicate that control of feed particle size was very important to prevent problems of dust entrainment in the fluidizing gas as well as to prevent feeder hardware problems caused by large stones and aggregates. After physical separation and size reduction, nearly 70. wt% of the trommel fines was obtained within the size range suitable for energy recovery using the existing fast pyrolysis system. This pyrolyzable fraction could account for about 83% of the energy content of the 'as received' trommel fines sample. Therefore there was no significant differences in the thermochemical properties of the raw and pre-treated feedstocks, indicating that suitably prepared trommel fines samples can be used for energy recovery, with significant reduction in mass and volume of the original waste. Consequently, this can lead to more than 90% reduction in the present costs of disposal of trommel fines in landfills. In addition, the recovered plastics and textile materials could be used as refuse derived fuel

    CO2 gasification of chars prepared from wood and forest residue

    Get PDF
    The CO2 gasification of chars prepared from Norway spruce and its forest residue was investigated in a thermogravimetric analyzer (TGA) at slow heating rates. The volatile content of the samples was negligible; hence the gasification reaction step could be studied alone, without the disturbance of the devolatilization reactions. Six TGA experiments were carried out for each sample with three different temperature programs in 60 and 100% CO2. Linear, modulated, and constant-reaction rate (CRR) temperature programs were employed to increase the information content available for the modeling. The temperatures at half of the mass loss were lower in the CRR experiments than in the other experiments by around 120 degrees C. A relatively simple, well-known reaction kinetic equation described the experiments. The dependence on the reacted fraction as well as the dependence on the CO2, concentration were described by power functions (n-order reactions). The evaluations were also carried out by assuming a function of the reacted fraction that can mimic the various random pore/random capillary models. These attempts, however, did not result in an improved fit quality. Nearly identical activation energy values were obtained for the chars made from wood and forest residues (221 and 218 kJ/mol, respectively). Nevertheless, the forest residue char was more reactive; the temperatures at half of the mass loss showed 20-34 degrees C differences between the two chars at 10 degrees C/min heating rates. The assumption of a common activation energy, E, and a common reaction order, v, on the CO2, concentration for the two chars had only a negligible effect on the fit quality

    Pyrolysis-catalytic hydrogenation of cellulose-hemicellulose-lignin and biomass agricultural wastes for synthetic natural gas production

    Get PDF
    The production of methane from the biopolymers; cellulose, hemicellulose and lignin, and also four different agricultural waste biomass samples was investigated using a two-stage pyrolysis-catalytic hydrogenation reactor. The biomass agricultural waste samples were rice straw, willow, sugar cane bagasse and ugu plant. Pyrolysis of the biomass samples was carried out in a 1st stage reactor while the catalytic hydrogenation was carried out the 2nd stage reactor using a 10 wt.% Ni/Al2O3 catalyst maintained at 500 °C with heating rate of 20 °C min−1 and a H2 space velocity of 3600 ml h−1 g−1catalyst. The thermal degradation characteristics of the biomass components, mixtures of the components and the biomass waste samples was also conducted using thermogravimetric analysis (TGA). TGA of the mixtures of the biomass components showed interaction, illustrated by a shift in the thermal degradation temperatures for hemicellulose and lignin. The results from the pyrolysis-catalytic hydrogenation revealed that the methane yield increased in the presence of the catalyst; the methane yield obtained from the hemicellulose (7.9 mmoles g−1biomass) and cellulose (7.65 mmoles g−1biomass) was significantly higher than that produced from lignin, (3.7 mmoles g−1biomass). The pyrolysis-catalytic hydrogenation of the mixtures of the biopolymers showed clear interaction, producing higher total gas yield and methane yield compared to calculated values. Pyrolysis-catalytic hydrogenation of the agricultural biomass wastes suggests that the product methane yield was influenced by the percentage of hemicellulose and cellulose content in the biomass

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Analysis of Viral Entry Factors and Discovery of Anti-filoviral Entry Inhibitors

    No full text
    Emerging viral diseases, such as those caused by H5N1 avian influenza and the filoviruses Ebola and Marburg virus, are often difficult to predict and can lead to severe illness and death. It is important to study these viruses so we can best know how to combat them. In this work, we investigate both the basic mechanism of infection for H5N1 influenza virus, Ebola, and Marburg virus, and to develop effective anti-filoviral therapeutics. Here we demonstrate that the reticulon 4 receptor (RTN4R) plays a role in influenza infection, while the tropomyosin receptor kinase B (TrkB) is involved in filoviral infection. We also report several small molecule compounds and plant extracts which exhibit potent anti-filoviral activity
    corecore