3,354 research outputs found

    Simulation of a Hybrid Optical/Radio/Acoustic Extension to IceCube for EeV Neutrino Detection

    Full text link
    Astrophysical neutrinos at ∼\simEeV energies promise to be an interesting source for astrophysics and particle physics. Detecting the predicted cosmogenic (``GZK'') neutrinos at 1016^{16} - 1020^{20} eV would test models of cosmic ray production at these energies and probe particle physics at ∼\sim100 TeV center-of-mass energy. While IceCube could detect ∼\sim1 GZK event per year, it is necessary to detect 10 or more events per year in order to study temporal, angular, and spectral distributions. The IceCube observatory may be able to achieve such event rates with an extension including optical, radio, and acoustic receivers. We present results from simulating such a hybrid detector.Comment: 4 pages, 2 figures; to appear in the Proceedings of the 29th ICRC, Pune, Indi

    A Cenozoic-style scenario for the end-Ordovician glaciation

    Get PDF
    The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive glaciation potentially at elevated CO2 levels, biogeochemical cycle disruptions recorded as large isotope anomalies and a devastating extinction event. Ice-sheet volumes claimed to be twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as today. Here we argue that some of these remarkable claims arise from undersampling of incomplete geological sections that led to apparent temporal correlations within the relatively coarse resolution capability of Palaeozoic biochronostratigraphy. We examine exceptionally complete sedimentary records from two, low and high, palaeolatitude settings. Their correlation framework reveals a Cenozoic-style scenario including three main glacial cycles and higher-order phenomena. This necessitates revision of mechanisms for the end-Ordovician events, as the first extinction is tied to an early phase of melting, not to initial cooling, and the largest δ13C excursion occurs during final deglaciation, not at the glacial apex

    New pixelized Micromegas detector with low discharge rate for the COMPASS experiment

    Full text link
    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than for the present Micromegas detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Two solutions of reduction of discharge impact have been studied, with Micromegas detectors using resistive layers and using an additional GEM foil. Performance of such detectors has also been measured. A large size prototypes with nominal active area and pixelized read-out has been produced and installed at COMPASS in 2010. In 2011 prototypes featuring an additional GEM foil, as well as an resistive prototype, are installed at COMPASS and preliminary results from those detectors presented very good performance. We present here the project and report on its status, in particular the performance of large size prototypes with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa

    Modelling of ionizing feedback with smoothed particle hydrodynamics and Monte Carlo radiative transfer on a Voronoi grid

    Get PDF
    MAP and IAB acknowledge funding from the European Research Council for the FP7 ERC advanced grant project ECOGAL. MAP and JMDK gratefully acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement number 714907). JMDK gratefully acknowledges funding from the German Research Foundation (DFG) in the form of an Emmy Noether Research Group (grant number KR4801/1-1). BV acknowledges partial funding from the Science and Technology Facilities Council (STFC) grant ST/M001296/1 and currently receives financial support from the Belgian Science Policy Office (BELSPO) through the PRODEX project ‘SPICA-SKIRT: A far-infrared photometry and polarimetry simulation toolbox in preparation of the SPICA mission’ (C4000128500). Part of this work was performed using the DiRAC Data Intensive service at Leicester, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The equipment was funded by BEIS capital funding via STFC capital grants ST/K000373/1 and ST/R002363/1 and STFC DiRAC Operations grant ST/R001014/1.The ionizing feedback of young massive stars is well known to influence the dynamics of the birth environment and hence plays an important role in regulating the star formation process in molecular clouds. For this reason, modern hydrodynamics codes adopt a variety of techniques accounting for these radiative effects. A key problem hampering these efforts is that the hydrodynamics are often solved using smoothed particle hydrodynamics (SPH), whereas radiative transfer is typically solved on a grid. Here we present a radiation-hydrodynamics (RHD) scheme combining the SPH code phantom and the Monte Carlo radiative transfer (MCRT) code cmacionize, using the particle distribution to construct a Voronoi grid on which the MCRT is performed. We demonstrate that the scheme successfully reproduces the well-studied problem of D-type H ii region expansion in a uniform density medium. Furthermore, we use this simulation setup to study the robustness of the RHD code with varying choice of grid structure, density mapping method, and mass and temporal resolution. To test the scheme under more realistic conditions, we apply it to a simulated star-forming cloud reminiscing those in the Central Molecular Zone of our Galaxy in order to estimate the amount of ionized material that a single source could create. We find that a stellar population of several 103 M⊙10^3~\rm {M_{\odot }} is needed to noticeably ionize the cloud. Based on our results, we formulate a set of recommendations to guide the numerical setup of future and more complex simulations of star forming clouds.Publisher PDFPeer reviewe

    Chitinozoan biozonation in the upper Katian and Hirnantian of the Welsh Basin, UK

    Get PDF
    AbstractHere we present a chitinozoan biostratigraphical framework for the South Wales upper Katian and Hirnantian (Ashgill) succession. The current study indicates that three of the six Avalonian Ashgill chitinozoan biozones are recognised in the Welsh Basin; the bergstroemi, fossensis and umbilicata biozones. The Baltoscandian and Laurentian Hercochitina gamachiana biozone is suggested by the presence of Belonechitina cf. gamachiana and the Spinachitina taugourdeaui biozone is suggested by Spinachitina cf. taugourdeaui. Intervening between these is a newly erected lower Hirnantian regional biozone, the Belonechitina llangrannogensis n. sp. biozone. The late Katian (Cautleyan–Rawtheyan) Conochitina rugata biozone was not recognised, though the index taxon is recorded. The presence of B. cf. gamachiana below the lithological expression of the Hirnantian glacial maximum and alongside Rawtheyan graptolite and trilobite assemblages shows that the local base of the B. cf. gamachiana biozone lies beneath the Katian–Hirnantian boundary. Although at present in open nomenclature, the finds of B. cf. gamachiana and S. cf. taugourdeaui, from sites where these chitinozoans co-occur with graptolites, are potentially important; the area offers the potential to study how B. cf. gamachiana and S. cf. taugourdeaui are taxonomically and stratigraphically linked to the original index species. A composite Katian–Hirnantian chitinozoan biozonation for the Welsh Basin is presented and three new species are defined: Belonechitina llangrannogensis n. sp., Belonechitina ceregidionensis n. sp. and Spinachitina penbryniensis n. sp

    With mouse age comes wisdom : a review and suggestions of relevant mouse models for age-related conditions

    Get PDF
    Ageing is a complex multifactorial process that results in many changes in physiological changes processes that ultimately increase susceptibility to a wide range of diseases. As such an ageing population is resulting in a pressing need for more and improved treatments across an assortment of diseases. Such treatments can come from a better understanding of the pathogenic pathways which, in turn, can be derived from models of disease. Therefore the more closely the model resembles the disease situation the more likely relevant the data will be that is generated from them. Here we review the state of knowledge of mouse models of a range of diseases and aspects of an ageing physiology that are all germane to ageing. We also give recommendations on the most common mouse models on their relevance to the clinical situations occurring in aged patients and look forward as to how research in ageing models can be carried out. As we continue to elucidate the pathophysiology of disease, often through mouse models, we also learn what is needed to refine these models. Such factors can include better models, reflecting the ageing patient population, or a better phenotypic understanding of existing models

    Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    Full text link
    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give a status report of the camera design and highlight a number of technological advancements that made this development possible.Comment: 8 pages, 5 figures, In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Public support for European cooperation in the procurement, stockpiling and distribution of medicines

    Get PDF
    Background: The COVID-19 outbreak has heightened ongoing political debate about the international joint procurement of medicines and medical countermeasures. The European Union (EU) has developed what remains largely contractual and decentralized international procurement cooperation. The corona crisis has broadened and deepened public debate on such cooperation, in particular on the scope of cooperation, solidarity in the allocation of such cooperation, and delegation of cooperative decision-making. Crucial to political debate about these issues are public attitudes that constrain and undergird international cooperation. Methods: Our survey includes a randomized survey experiment (conjoint analysis) on a representative sample in five European countries in March 2020, informed by legal and policy debate on medical cooperation. Respondents choose and rate policy packages containing randomized mixes of policy attributes with respect to the scope of medicines covered, the solidarity in conferring priority access and the level of delegation. Results: In all country populations surveyed, the experiment reveals considerable popular support for European cooperation. Significant majorities preferred cooperation packages with greater rather than less scope of medicines regulated; with priority given to most in-need countries; and with delegation to EU-level rather than national expertise. Conclusion: Joint procurement raises delicate questions with regard to its scope, the inclusion of cross-border solidarity and the delegation of decision-making, that explain reluctance toward joint procurement among political decision-makers. This research shows that there is considerable public support across different countries in favor of centralization, i.e. a large scope and solidarity in the allocation and delegation of decision-making
    • …
    corecore