302 research outputs found

    On Exchange of Orbital Angular Momentum Between Twisted Photons and Atomic Electrons

    Full text link
    We obtain an expression for the matrix element for a twisted (Laguerre-Gaussian profile) photon scattering from a hydrogen atom. We consider photons incoming with an orbital angular momentum (OAM) of \ell \hbar, carried by a factor of eiϕe^{i \ell \phi} not present in a plane-wave or pure Gaussian profile beam. The nature of the transfer of +2+2\ell units of OAM from the photon to the azimuthal atomic quantum number of the atom is investigated. We obtain simple formulae for these OAM flip transitions for elastic forward scattering of twisted photons when the photon wavelength λ\lambda is large compared with the atomic target size aa, and small compared the Rayleigh range zRz_R, which characterizes the collimation length of the twisted photon beam.Comment: 16 page

    Limitation of Microbial Processes at Saturation-Level Salinities in a Microbial Mat Covering a Coastal Salt Flat

    Get PDF
    Hypersaline microbial mats are dense microbial ecosystems capable of performing complete element cycling and are considered analogs of early Earth and hypothetical extraterrestrial ecosystems. We studied the functionality and limits of key biogeochemical processes, such as photosynthesis, aerobic respiration, and sulfur cycling, in salt crust-covered microbial mats from a tidal flat at the coast of Oman. We measured light, oxygen, and sulfide microprofiles as well as sulfate reduction rates at salt saturation and in flood conditions and determined fine-scale stratification of pigments, biomass, and microbial taxa in the resident microbial community. The salt crust did not protect the mats against irradiation or evaporation. Although some oxygen production was measurable at salinities of <= 30% (wt/vol) in situ, at saturation-level salinity (40%), oxygenic photosynthesis was completely inhibited and only resumed 2 days after reducing the porewater salinity to 12%. Aerobic respiration and active sulfur cycling occurred at low rates under salt saturation and increased strongly upon salinity reduction. Apart from high relative abundances of Chloroflexi, photoheterotrophic Alphaproteobacteria, Bacteroidetes, and Archaea, the mat contained a distinct layer harboring filamentous Cyanobacteria, which is unusual for such high salinities. Our results show that the diverse microbial community inhabiting this salt flat mat ultimately depends on periodic salt dilution to be selfsustaining and is rather adapted to merely survive salt saturation than to thrive under the salt crust. IMPORTANCE Due to their abilities to survive intense radiation and low water availability, hypersaline microbial mats are often suggested to be analogs of potential extraterrestrial life. However, even the limitations imposed on microbial processes by saturation-level salinity found on Earth have rarely been studied in situ. While abundance and diversity of microbial life in salt-saturated environments are well documented, most of our knowledge on process limitations stems from culture-based studies, few in situ studies, and theoretical calculations. In particular, oxygenic photosynthesis has barely been explored beyond 5 M NaCl (28% wt/vol). By applying a variety of biogeochemical and molecular methods, we show that despite abundance of photoautotrophic microorganisms, oxygenic photosynthesis is inhibited in salt-crust-covered microbial mats at saturation salinities, while rates of other energy generation processes are decreased several-fold. Hence, the complete element cycling required for self-sustaining microbial communities only occurs at lower salt concentrations

    Life after charge noise: recent results with transmon qubits

    Full text link
    We review the main theoretical and experimental results for the transmon, a superconducting charge qubit derived from the Cooper pair box. The increased ratio of the Josephson to charging energy results in an exponential suppression of the transmon's sensitivity to 1/f charge noise. This has been observed experimentally and yields homogeneous broadening, negligible pure dephasing, and long coherence times of up to 3 microseconds. Anharmonicity of the energy spectrum is required for qubit operation, and has been proven to be sufficient in transmon devices. Transmons have been implemented in a wide array of experiments, demonstrating consistent and reproducible results in very good agreement with theory.Comment: 6 pages, 4 figures. Review article, accepted for publication in Quantum Inf. Pro

    Survey of Valinokkam Bay and adjoining area to assess its suitability for integrated sea farming — A report

    Get PDF
    The Valinokkam Bay and the adjoining area, east of the Bay surveyed, lie between Lat. 9°9' N and 9° 12' N and Long. 78°30'E and 78°42'E . The available information indicates that the bay and the adjoining grounds in the sea are highly productive and suitable for sea farming activities

    X-Stream: Edge-centric Graph Processing using Streaming Partitions

    Get PDF
    X-Stream is a system for processing both in-memory and out-of-core graphs on a single shared-memory machine. While retaining the scatter-gather programming model with state stored in the vertices, X-Stream is novel in (i) using an edge-centric rather than a vertex-centric implementation of this model, and (ii) streaming completely unordered edge lists rather than performing random access. This design is motivated by the fact that sequential bandwidth for all storage media (main memory, SSD, and magnetic disk) is substantially larger than random access bandwidth. We demonstrate that a large number of graph algorithms can be expressed using the edge-centric scatter-gather model. The resulting implementations scale well in terms of number of cores, in terms of number of I/O devices, and across different storage media. X-Stream competes favorably with existing systems for graph processing. Besides sequential access, we identify as one of the main contributors to better performance the fact that X-Stream does not need to sort edge lists during pre-processing

    A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia.

    Get PDF
    The aim of this paper is to use a knowledge-driven expert-based geographical information system (GIS) model coupling with remote-sensing-derived parameters for groundwater potential mapping in an area of the Upper Langat Basin, Malaysia. In this study, nine groundwater storage controlling parameters that affect groundwater occurrences are derived from remotely sensed imagery, available maps, and associated databases. Those parameters are: lithology, slope, lineament, land use, soil, rainfall, drainage density, elevation, and geomorphology. Then the parameter layers were integrated and modeled using a knowledge-driven GIS of weighted linear combination. The weightage and score for each parameter and their classes are based on the Malaysian groundwater expert opinion survey. The predicted groundwater potential map was classified into four distinct zones based on the classification scheme designed by Department of Minerals and Geoscience Malaysia (JMG). The results showed that about 17% of the study area falls under low-potential zone, with 66% on moderate-potential zone, 15% with high-potential zone, and only 0.45% falls under very-high-potential zone. The results obtained in this study were validated with the groundwater borehole wells data compiled by the JMG and showed 76% of prediction accuracy. In addition statistical analysis indicated that hard rock dominant of the study area is controlled by secondary porosity such as distance from lineament and density of lineament. There are high correlations between area percentage of predicted groundwater potential zones and groundwater well yield. Results obtained from this study can be useful for future planning of groundwater exploration, planning and development by related agencies in Malaysia which provide a rapid method and reduce cost as well as less time consuming. The results may be also transferable to other areas of similar hydrological characteristics

    Multiattribute perceptual mapping with idiosyncratic brand and attribute sets

    Get PDF
    This article proposes an extremely flexible procedure for perceptual mapping based on multiattribute ratings, such that the respondent freely generates sets of both brands and attributes. Therefore, the brands and attributes are known and relevant to each participant. Collecting and analyzing such idiosyncratic datasets can be challenging. Therefore, this study proposes a modification of generalized canonical correlation analysis to support the analysis of the complex data structure. The model results in a common perceptual map with subject-specific and overall fit measures. An experimental study compares the proposed procedure with alternative approaches using predetermined sets of brands and/or attributes. In the proposed procedure, brands are better known, attributes appear more relevant, and the respondent's burden is lower. The positions of brands in the new perceptual map differ from those obtained when using fixed brand sets. Moreover, the new procedure typically yields positioning information on more brands. An empirical study on positioning of shoe stores illustrates our procedure and resulting insights. Finally, the authors discuss limitations, potential application areas, and directions for research

    Polymorphism of viral dsRNA in Xanthophyllomyces dendrorhous strains isolated from different geographic areas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Strains of the astaxanthin producing yeast <it>Xanthophyllomyces dendrorhous </it>have been isolated from different cold regions around the earth, and the presence of double stranded RNA (dsRNA) elements was described in some isolates. This kind of viruses is widely distributed among yeasts and filamentous fungi and, although generally are cryptic in function, their studies have been a key factor in the knowledge of important fungi. In this work, the characterization and genetic relationships among dsRNA elements were determined in strains representatives of almost all regions of the earth where <it>X. dendrorhous </it>have been isolated.</p> <p>Results</p> <p>Almost all strains of <it>X. dendrorhous </it>analyzed carry one, two or four dsRNA elements, of molecular sizes in the range from 0.8 to 5.0 kb. Different dsRNA-patterns were observed in strains with different geographic origin, being L1 (5.0 kb) the common dsRNA element. By hybridization assays a high genomic polymorphism was observed among L1 dsRNAs of different <it>X. dendrorhous </it>strains. Contrary, hybridization was observed between L1 and L2 dsRNAs of strains from same or different regions, while the dsRNA elements of minor sizes (M, S1, and S2) present in several strains did not show hybridization with neither L1 or L2 dsRNAs. Along the growth curve of UCD 67-385 (harboring four dsRNAs) an increase of L2 relative to L1 dsRNA was observed, whiles the S1/L1 ratio remains constant, as well as the M/L1 ratio of Patagonian strain. Strains cured of S2 dsRNA were obtained by treatment with anisomycin, and comparison of its dsRNA contents with uncured strain, revealed an increase of L1 dsRNA while the L2 and S1 dsRNA remain unaltered.</p> <p>Conclusion</p> <p>The dsRNA elements of <it>X. dendrorhous </it>are highly variable in size and sequence, and the dsRNA pattern is specific to the geographic region of isolation. Each L1 and L2 dsRNA are viral elements able to self replicate and to coexist into a cell, and L1 and S2 dsRNAs elements could be part of a helper/satellite virus system in <it>X. dendrorhous</it>.</p
    corecore