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Abstract This article proposes an extremely flexible procedure for perceptual
mapping based on multiattribute ratings, such that the respondent freely gener-
ates sets of both brands and attributes. Therefore, the brands and attributes are
known and relevant to each participant. Collecting and analyzing such idiosyn-
cratic datasets can be challenging. Therefore, this study proposes a modification
of generalized canonical correlation analysis to support the analysis of the
complex data structure. The model results in a common perceptual map with
subject-specific and overall fit measures. An experimental study compares the
proposed procedure with alternative approaches using predetermined sets of
brands and/or attributes. In the proposed procedure, brands are better known,
attributes appear more relevant, and the respondent’s burden is lower. The
positions of brands in the new perceptual map differ from those obtained when
using fixed brand sets. Moreover, the new procedure typically yields positioning
information on more brands. An empirical study on positioning of shoe stores
illustrates our procedure and resulting insights. Finally, the authors discuss
limitations, potential application areas, and directions for research.
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1 Introduction

Marketing managers frequently make decisions about product (re)design and brand
(re)positioning, for which they might rely on a framework in which consumers offer
their evaluations and choices of a limited set of perceptual attributes (Kaul and Rao
1995; Van Kleef et al. 2004). A product can be characterized as a bundle of attributes,
and each brand receives a score on each attribute (Lancaster 1971). Then the brands
can be represented graphically in a so-called perceptual map that spans the attributes.
The relative position of competitive brands has proven very informative for managers
(Cornelius et al. 2010; Johnson and Hudson 1996), and research that proposes
improvements to perceptual maps adds to product and brand management abilities
(Day et al. 1979; Dillon et al. 1985; Kaul and Rao 1995; Shocker and Srinivasan
1979; Van Kleef et al. 2004). In this article, we propose a new, extremely flexible
perceptual mapping methodology that allows each consumer to decide which brands
and attributes to evaluate.

Of the various methods proposed and applied to obtain perceptual maps, a basic
distinction exists between decompositional and compositional approaches (Huber and
Holbrook 1979). Decompositional approaches analyze overall judgments of brands,
such as dissimilarities or preferences, with multidimensional scaling (Carroll and
Green 1997; Cooper 1983), whereas compositional approaches assess consumer
ratings of brands according to various attributes using factor analysis, discriminant
analysis, canonical correlation analysis, or an alternative multivariate analysis method
(Dillon et al. 1985; Green and Douglas Carroll 1988; Hauser and Koppelman 1979;
Holbrook and Moore 1982; Huber and Holbrook 1979; Steenkamp et al. 1994). In
this paper, we focus on the compositional approaches.

Steenkamp et al. (1994) propose a compositional procedure based on individual-
specific attribute sets. Their approach grants each consumer the freedom to indicate
which attributes he or she uses in product perceptions. They then evaluate the brands,
using the idiosyncratic attribute sets. The advantage of such an approach is that
subjects only evaluate objects according to attributes relevant to them. However,
consumers also differ in their knowledge of the brands. We build on the work of
Steenkamp et al. (1994) and extend their approach to multiattribute perceptual
mapping that allows for idiosyncratic sets for both attributes and brands. In particular,
we propose a procedure for perceptual mapping based on multiple attribute ratings, in
which the sets of both brands and attributes are individual specific and generated by
each respondent. This tactic ensures that the brands are known to the subjects and the
attributes are relevant for their evaluations.

The remainder of this paper is organized as follows. In the next section, we provide
a rationale for perceptual mapping based on idiosyncratic sets of brands and attrib-
utes, and we discuss methods to collect such idiosyncratic datasets. Next, we offer a
generalized canonical correlation analysis procedure, as developed by Van de Velden
and Bijmolt (2006), which we use to assess the complex data structure. The analysis
model produces a common perceptual map and various fit measures. In an experi-
mental study, we compare this procedure to alternative approaches, namely, tradi-
tional multiattribute perceptual mapping and the procedure proposed by Steenkamp et
al. (1994). Finally, we discuss limitations, potential application areas, and directions
for further research.
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2 Idiosyncratic brand and attribute sets

When building perceptual maps based on multiattribute rating data, the determination
of input for the analysis is perhaps the most important issue (Dillon et al. 1985;
Shocker and Srinivasan 1979). Defining the set of brands to be evaluated and set of
attributes to be used represent key steps in the study design phase (Kaul and Rao
1995). The perceptual map thus derived contains only brands included in a prespe-
cified set and is based solely on selected attributes. This potential distortion increases
the danger of externally invalid results, leading various researchers to propose
procedures that can facilitate the selection of brands (Day et al. 1979; Srivastava et
al. 1984) and attributes (Bech-Larsen and Nielsen 1999; Bottomley et al. 2000;
Breivik and Supphellen 2003; Steenkamp and Van Trijp 1997; Van Ittersum et al.
2007). However, the researcher still must make the final decision about which brands
and attributes to include, and there is always the possibility that some brands and/or
attributes are erroneously included or excluded.

Beyond this uncertainty about the correctness of the brand and attribute sets for the
perceptual mapping study, decision makers must consider the appropriateness of
some brands and/or attributes for specific consumers. Consumers differ considerably
in (1) the brands they know and (2) the attributes they deem relevant for a product
category. If the sets of brands and attributes remain fixed across consumers, some
consumers must provide judgments even if they have insufficient knowledge. The
lack of information may lead a consumer to make inferences about a brand score for
an unfamiliar attribute for example, such as by using an overall evaluation of the
brand, related attributes for which brand values are known, typical attribute values
within the product category, or some other anchor value (Greenleaf 1992; Lynch et al.
1991; Sanbonmatsu et al. 1992). If an attribute value is unknown to a respondent, he
or she thus might use a multitude of processes and inferences (Kardes et al. 2004) to
derive a final rating, which could cause substantial bias in the data.

2.1 Elicitation of attributes and brands

In general, a broad range of factors affects the importance of an attribute and/or brand
ratings on those attributes (e.g., Dillon et al. 2001; Mason et al. 2001). For example, if
the attribute provides strong differentiation across brands and the consumer lacks
further information, attribute importance may shift upward (Muthukrishnan and
Kardes 2001). Therefore, careful procedures for selecting brands and attributes are
necessary.

To diminish the distorting effects of insufficient knowledge about brand scores on
attributes, the brands and attributes to be evaluated can be elicited from individual
respondents. Proposed elicitation procedures include free elicitation or direct ques-
tioning, hierarchical dichotomization, Kelly’s repertory grid, free sorting, and ranking
tasks (Shocker and Srinivasan 1979). Comparisons of these elicitation procedures
(Bech-Larsen and Nielsen 1999; Steenkamp and Van Trijp 1997) indicate high
convergent validity across the various methods with respect to the attributes elicited,
though free elicitation also offers other important advantages that make it the
preferred method. In free elicitation, the respondent, in response to a direct prompt,
lists attributes that are important for a certain decision, such as choosing among
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brands. A free elicitation task induces a strong focus on intrinsically relevant attrib-
utes and yields relatively large sets of attributes, though it remains time efficient and
attractive to subjects.

Less research considers alternative methods for generating sets of relevant brands;
a common assumption is simply that the set of brands in a certain market or product
category is given or readily apparent (Kaul and Rao 1995). However, direct ques-
tioning about relevant brands can be successful, as demonstrated for brand elicitation
in positioning studies and customer-oriented approaches to market definition (Day et
al. 1979; Srivastava et al. 1984). Such unaided recall measures also reflect important
familiarity-related aspects of a particular brand for a consumer, which facilitates
correct evaluations. Finally, the exact formulation in the elicitation task determines
which brands will be included. Consumer perceptions of brands will be based on
various sources, such as purchasing, consumption, advertisements, and word-of-
mouth communication. For example, the researcher can determine whether experi-
ence with purchasing or consumption of the brand is crucial or not and alter the brand
selection question accordingly.

Considering its relative advantages and widespread use, we adopt free elicitation
to generate individual-specific attribute and brand sets, as recommended by Breivik
and Supphellen (2003) and Steenkamp and Van Trijp (1997).

3 Model

3.1 Data collection

In our flexible perceptual mapping procedure, the data collection stage starts with the
free elicitation of respondent-specific sets of important attributes and known brands
by each respondent i01, …, N. We allow the numbers of both rows (brands) Mi and
columns (attributes) Pi to differ between the N observed matrices (respondents). The
respondent then rates each brand on each of the attributes. Thus, we observe matrices
Xi of order Mi×Pi, i01,…, N. Although the numbers of rows and columns are
respondent specific, there is an important difference between them. First, we deter-
mine before the analysis stage which rows of different data matrices correspond to the
same brands. Thus, the set of brands evaluated by respondent i is a subset of the entire
set of brands, j01, …, M. Second, the columns are completely idiosyncratic, so
product attributes used by different respondents remain specific to each person
instead of being content analyzed and classified in advance.

3.2 Analysis model

The objective of perceptual mapping is to obtain a common, low-dimensional space
for all M brands that best represents the information contained in the observed
matrices Xi. For our data, we do so by applying a generalization of the canonical
correlation analysis proposed by Carroll (1968). Carroll’s generalized canonical
correlation analysis aims to derive Q linear combinations of the (centered) data
matrices Xi in such a way that the sum of the squared distances between the linear
combinations and an orthogonal Q-dimensional group configuration Y is at a
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minimum. A key characteristic of this method is that the data matrices Xi may have
different column orders, such that the number of attributes Pi is subject specific. The
number of rows M however is the same for all respondents i. Steenkamp et al. (1994)
also apply generalized canonical correlation analysis to analyze the multiattribute
ratings of N consumers evaluating M brands using idiosyncratic sets of Pi product
attributes.

For our proposed data collection procedure, each respondent i evaluates a subset of
Mi brands on an idiosyncratic set of Pi attributes, where Mi is restricted to be larger
than 1 for methodological reasons. Next, we consider only the distances (differences)
between the linear combinations of the observedMi rows of Xi and the corresponding
rows in the group configuration Y. To do so, we use a modified version of generalized
canonical correlation analysis (Van der Burg 1988; Van der Burg et al. 1994; Van de
Velden and Bijmolt 2006) that employs selection matrices. In this method, each
respondent evaluates only those brands known to him/her on attributes that are
relevant to him/her. Yet, the analysis model derives a common perceptual map from
this data with idiosyncratic sets of brands and attributes. The method accommodates
the idiosyncratic brand sets by selecting the appropriate brands/rows for each respon-
dent and it accommodates the idiosyncratic attributes sets by fitting the common
dimensions of Y to the attributes/columns of Xi without requiring a content-based
match between the columns. For a technical exposition of the method, we refer to
Appendix I.

3.3 Assessing model fit

To assess the quality of a solution, we use, in accordance with Van der Burg et al.
(1994) a measure called variance accounted for (VAF). The VAF is calculated as
follows. For each respondent, we regress each column (i.e., each attribute) of the data
matrix on the dimensions of the group configuration. Averaging the corresponding
coefficients of determination (i.e., R2) produces the VAF. Alternatively, one could
calculate a so-called redundancy index (Gleason 1976) by considering, for each
respondent, the variance in the observed variables accounted for by the linear
predictions and averaging these. For standardized data and equal numbers of rows
in each set, the redundancy index is equivalent to the VAF. In other cases, it tends to
be very similar.

3.4 Assessing the dimensionality of the configuration

The number of dimensions in the group configuration must be determined by the
researcher, who should balance model fit against parsimony. Adding one or more
dimensions to the configuration improves model fit but lowers parsimony. To
make the determination, a researcher can gather multiple solutions that vary in
the number of dimensions and compute the corresponding fit measures, then
choose the lowest number of dimensions for which the model fit is still sufficient.
Comparable to a scree test in factor analysis, it might be beneficial to look for an
elbow in a plot of the VAFs or redundancy indices against the number of
dimensions. However, these fit measures for solutions of different dimensionalities
must be calculated separately.
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4 Experimental comparison

4.1 Purpose

The perceptual mapping procedure we propose differs from existing procedures in
that the brands and attributes to be judged are determined by individual respondents.
Because a respondent is likely uncertain about judgments of unknown brands and/or
irrelevant attributes, the resulting data may be less valid. However, our procedure
requires an additional step in the data collection procedure, namely, the selection of
brands and attributes, which may induce respondent fatigue and have a negative
impact on data quality. To examine the relative advantages of various procedures, we
therefore conduct an experiment to compare three alternative methods, including both
respondents’ evaluations of the task and the perceptual maps obtained.

4.2 Study design

We compare three data collection procedures for multiattribute perceptual mapping:
(1) our proposed procedure with idiosyncratic sets of brands and attributes, (2) the
procedure of Steenkamp et al. (1994) with idiosyncratic attribute sets but a fixed
brand set, and (3) traditional multiattribute ratings with fixed sets of brands and
attributes. For the latter two procedures, to determine brand and attribute sets in
advance, we conducted a small-scale preliminary study to identify brands and
attributes that consumers typically select with our proposed procedure. To select
the brands, we also examined actual market shares. In addition, the number of brands
and attributes should be feasible and comparable to regular perceptual mapping
studies. Therefore, we selected 10 brands and eight attributes for the traditional
procedure; to increase generalizability, we also replicated our study using two
different product categories, supermarket chains and car brands.

The data were collected through an Internet survey conducted with the CentER-
panel of Tilburg University, The Netherlands. The panel is representative of the
population of Dutch households, and our total sample size was 1,224 subjects. To
prevent cross-task and order effects, we applied a 3 (data collection procedures)×2
(product categories) between-subjects design, with respondents randomly assigned to
one of the six treatments. Sample sizes per cell ranged from 182 to 227. In the overall
sample, 48% of respondents were men; 33% were younger than 35 years and 31%
were 65 years or older.

The main judgment task consisted of multiattribute ratings of brands. In a brand-
by-brand approach, the respondents rated all attributes on a 10-point scale with
labeled end points. For tasks with fixed brand and/or attribute sets, the order of these
brands and attributes was random across respondents, but the order of attributes
remained constant across the different brands for each individual respondent. Because
the sets of brands and/or attributes were not determined in advance for some
experimental cells, we developed two judgment tasks to select the respondent-
specific brands and attributes. First, each respondent indicated, “Which supermarkets
do you know? Please think of supermarkets where you do your grocery shopping as
well as supermarkets which you do not visit usually.” Second, for the attributes, they
revealed, “Which attributes of supermarkets do you consider to be important when
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deciding where to shop?” Similar questions featured the other product category, car
brands. Such free elicitation tasks are fast and yield relatively many attributes (Bech-
Larsen and Nielsen 1999) and have been recommended by Breivik and Supphellen
(2003) and Steenkamp and Van Trijp (1997). We limited the number of self-generated
brands and attributes to a maximum of 10 and eight, respectively, to match the sizes
of the fixed brand and attribute sets. Respondents also had to label the end
points (1 and 10) for each self-generated attribute then considered the brands
one by one to rate each of them on the attributes.

At the end of the online questionnaire, respondents viewed a list of items associ-
ated with task evaluation dimensions: attribute relevance, brand knowledge, judg-
ment certainty, task simplicity, and task attitude (see Appendix II). For each task
evaluation dimension, we included three or four items, one or two of which were
reverse coded, and used a seven-point scale, from 10 totally disagree to 70totally agree.
The order of the items was random across subjects. All five scales indicate sufficient
internal consistency, with Cronbach’s alpha values between 0.67 and 0.83. Therefore,
we averaged the items to obtain the overall measures of the five evaluation dimensions.

4.3 Results: evaluation of judgment tasks

For some respondents, the number of brands (attributes) was fixed to 10 (eight), but
other respondents self-selected either the attributes or both brands and attributes.
People in the respective treatments groups mentioned an average of 6.3 supermarket
chains and 8.6 car brands with 4.7 and 4.2 attributes for supermarkets and automo-
biles, respectively. The number of attributes elicited is lower than in studies by
Steenkamp and Van Trijp (1997:8.62) and Bech-Larsen and Nielsen (1999: 9.53).
We speculate that this could be due to product category effects or to differences in
wording of the elicitation task.

The data collection procedures differ significantly according to measures of the
relevance of the attributes (Table 1). For both product categories, the attributes in
idiosyncratic sets appear more relevant, and relative evaluations of brand knowledge
and judgment certainty depend on the product category. For supermarkets, the
respondents indicate much greater knowledge of the idiosyncratic brand sets than
for the fixed sets. In this sense, our proposed procedure considerably outperforms
existing procedures. Certainty in judgments, which combines attribute relevancy and
brand knowledge, improves as we move from a procedure with all fixed sets, to only
fixed brand sets, to idiosyncratic brand and attribute sets. For car brands though, we
find no significant differences in brand knowledge or judgment certainty across the
three procedures.

For both product categories, task simplicity is similar across the three procedures.
It thus appears that the burden of the brand and attribute elicitation tasks balances out
the effort differences that mark the three attribute rating tasks. The task attitude
measures indicate that the respondents actually enjoy procedures with one or two
idiosyncratic sets better than the procedure with all fixed sets, especially for the
supermarket category.

Thus with the exception of the relevance of the attributes, the three procedures do
not differ substantially for judgments of car brands. Perhaps subjects are familiar with
many automobile brands (as indicated by the higher brand knowledge ratings for the
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fixed brand sets, compared with those for supermarkets), but they lack detailed or
diagnostic information (i.e., relatively low ratings on attribute relevance and judg-
ment certainty). As a consequence, task simplicity and task attitude worsen for all
respondents who judge automobiles instead of supermarkets, irrespective of the data
collection procedure.

4.4 Results: comparison of perceptual maps

For each product category, we analyze four datasets, which represent evaluations of
the fixed brand set obtained with each of the three procedures, plus evaluations of all
brands self-selected by at least 10 people for the procedure using idiosyncratic brand
sets. This latter criterion yields a set of 21 supermarkets and 28 automobile brands.
For the supermarket data, the free brand elicitation method surprisingly excluded one
of the supermarkets from the fixed set. We had selected this supermarket (A&P) on
the basis of its market share in the Netherlands (about 4%), yet it did not appear well
known among our respondents. The explanation may be regional, in that A&P has
attained very high market share in a small region of the country but remains poorly
known in other areas. We deleted any non-informative respondents, including those
who rated only one brand or one attribute or rated all brands exactly the same across
all attributes. The final number of subjects per dataset ranges between 141 and 220
(Table 2). For each dataset, we obtained solutions for one to eight dimensions with
generalized canonical correlation analysis as described in the model section. Using
the relative changes in model fit (RI and VAF), we selected four-dimensional
solutions for both product categories. In Table 2, we provide the model fit for each
analysis and the similarity (congruence coefficient) between solutions.

Table 2 Comparison of compositional methods: model fit and congruence across maps

Product
Category

Rating Procedure Sample
Size

Model Fit
(4 dimensions)

Similarity Across
Maps (Congruence
Coefficient)

RI VAF With A With B With C

Supermarkets Idiosyncratic brand and
attribute sets, 21 brands

200 0.81 0.84 0.95 0.84 0.82

Idiosyncratic brand and
attribute sets, 10 brands (A)

198 0.91 0.93 – 0.77 0.76

Fixed brand set and idiosyncratic
attribute set (B)

182 0.61 0.64 0.77 – 0.91

Fixed brand and attribute sets (C) 220 0.60 0.64 0.76 0.91 –

Automobiles Idiosyncratic brand and
attribute sets, 28 brands

142 0.62 0.63 0.91 0.85 0.81

Idiosyncratic brand and
attribute sets, 10 brands (A)

141 0.80 0.84 – 0.90 0.86

Fixed brand set and idiosyncratic
attribute set (B)

175 0.60 0.61 0.90 – 0.94

Fixed brand and attribute sets (C) 177 0.55 0.58 0.86 0.94 –
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For both product categories, the model fit (RI and VAF) is clearly highest
for the dataset with idiosyncratic brand and attributes sets, limited to 10 brands
from the fixed sets. Apparently, the ratings provided by respondents who select
the brands and judged them on self-selected attributes are most consistent
across subjects.

To compare perceptual maps, we use the congruence coefficient, which reveals the
similarity of interpoint Euclidean distances in two configurations. Lorenzo-Seva and
ten Berge (2006) show that congruence values in the range 0.85–0.94 correspond to
fair similarity, and higher values indicate near equivalence. For our proposed fully
idiosyncratic procedure, the relative position of the set of 10 brands is barely affected,
whether the rest of the brand set is analyzed simultaneously or not, as indicated by the
congruence coefficients of 0.95 and 0.91, for supermarkets and car brands, respec-
tively. The same result holds for the maps derived with the two procedures using
fixed brand sets, with congruence coefficients of 0.91 and 0.94. However, with
congruence coefficients between 0.76 and 0.90, we see that the correspondence
between the procedures using idiosyncratic brand sets versus those with fixed brand
sets is considerably lower. For example, inspection of the four-dimensional coordi-
nates shows that in the maps based on the fixed sets, the points corresponding to the
Albert Heijn and Aldi supermarkets are separated from one cluttered group of all
other supermarkets. Using idiosyncratic sets, Albert Heijn and Aldi remain separated
but the clutter of supermarkets disappears and store-specific positions can be identi-
fied. Hence, whether the brand set is fixed or idiosyncratic has a substantial impact on
the resulting perceptual map.

4.5 Conclusions

Our newly proposed approach offers clear advantages with respect to the data-
collection task. The attributes of the idiosyncratic sets appear more relevant than
those in the fixed attribute sets. In addition, the brands of the idiosyncratic sets are at
least as familiar (automobiles) or more familiar (supermarkets) to respondents than
those in fixed brand sets. Thus respondents enjoy the judgment task more and are
more certain about their judgments. Furthermore, the resulting perceptual maps are
minimally affected by the rating procedure applied, and the relative position of the
core set of 10 brands is similar across all solutions. However, the procedure with
idiosyncratic brand sets offers the advantage of revealing the relative positions of a
larger set of brands.

5 Empirical application

5.1 Study design

To illustrate the proposed perceptual mapping procedure, we apply it in a positioning
study of shoe stores in The Netherlands. Customers of shoe stores will differ in the
attributes they use to evaluate stores and in their familiarity with the stores. These
differences create problems if everyone must evaluate all shoe stores on all attributes;
therefore, it offers a suitable context for illustrating our perceptual mapping procedure.
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We recruited 42 respondents using a mall intercept method. Each respondent
completed a questionnaire, on which the first question asked, “Which characteristics
of shoe stores do you consider to be important when deciding where to go shopping
for shoes?” We then asked, “Which shoe stores are you familiar with? You should
think of stores where you tend to purchase your shoes, but also shoe stores where you
would probably not make a purchase.” Next, the respondent received a matrix-type
sheet and filled in the characteristics from question 1 as column labels and the shoe
stores from question 2 as row labels. In addition, we asked them to label both extreme
ends of the scale (1 and 10) for each attribute. Finally, the ratings for the shoe stores in
this matrix followed a semantic differential scale, from 1 to 10.

On average, respondents listed 6.9 shoe stores, with a minimum of 1 and a
maximum of 13. In addition, they listed 4.9 attributes on average, with a minimum
of 3 and a maximum of 7. We decided to retain shoe stores mentioned by at least four
subjects, which results in a total of 19 brands, a relatively large set for perceptual
mapping. Finally, we eliminated respondents who only assessed one shoe store from
this set of 19 brands, reducing the total to 38 respondents, who rated on average 5.9 of
the 19 shoe stores and used 4.8 attributes on average.

5.2 Results

We analyze the dataset for an increasing number of dimensions (1–8) and find increasing
model fit, according to both the RI measure (0.41, 0.65, 0.74, 0.86, 0.95, 0.98, 0.99, and
0.99) and the VAF measure (0.37, 0.63, 0.73, 0.86, 0.94, 0.97, 0.98, and 0.99). Because
model fit is satisfactory for the two-dimensional solution, to provide a simple visuali-
zation of the results, we present the perceptual map with two dimensions in Fig. 1.

In the perceptual map in Fig. 1, stores are spread over the map, with several
subgroups of close competitors and some outsiders. For example, V&D is positioned
far away from the other stores; most other stores in this study sell only shoes, but
V&D is a department store. In addition, compared with the other stores, V&D has a
very broad assortment, of which shoes is a relatively small component. Four brands,
Massaschoen, Schoenenreus, Scapino, and Van Haren, form a competitive group of
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low-priced shoe stores with national coverage and relatively large outlets. Another
example is the close positioning of Manfield and Cinderella, both more expensive,
brand-oriented shoe stores. Thus our proposed method results in an interpretable,
insightful perceptual map of a large set of shoe stores.

6 Discussion

We have proposed and tested a new multiattribute perceptual mapping procedure
based on idiosyncratic sets of brands and attributes that are elicited from respondents,
rather than being predetermined by a researcher. The flexibility, ease of use, and
validity of our procedure is generally better than those of existing procedures with
fixed sets of brands and/or attributes.

To test our approach, we compared its perceptual maps with those obtained from
previously suggested data-collection procedures. In line with extant literature (Hauser
and Koppelman 1979; Huber and Holbrook 1979; Steenkamp and Van Trijp 1996),
we find relatively minor differences among the alternative perceptual mapping
approaches using the same brand sets. In general, this outcome represents a positive
finding because perceptual mapping methods consistently perform very well in terms
of convergent validity. If a certain market has a fairly stable or strong relative
positioning of brands, various methods tend to reveal the same underlying structure.
However, whether the brand set is fixed or selected by the individual respondent does
affect the perceptual maps obtained considerably. In addition, an important difference
and advantage of our procedure over existing methods is its capability to produce a
perceptual map with a large number of brands. With modern levels of market fragmen-
tation, different consumers often use different attributes to evaluate different brands.
Hence, proper selection of the brands and attributes, wording of the questions, and
selection of the respondents are essential when using fixed brand and attribute sets. The
adaptiveness of the brand and attribute sets is, therefore, a key benefit of our approach.

6.1 Potential applications

In modern times, various situations involve idiosyncratic sets, as subsets of a huge,
already complete set. For example, Ho et al. (2010) consider movie ratings obtained
from Internet sources. In such data, evaluators typically observe a subset of movies, and
attributes (e.g., director, actors) may be movie and/or genre specific. Instead of selecting
an evaluator by movie sample, such that everyone observes all movies, our procedure
allows for the processing of idiosyncratic data. Similarly, in online stores, the number of
items to be evaluated can be huge, so our procedure should be valuable in such settings.

The perceptual mapping approach with idiosyncratic brand and attribute sets fits with
a stream of research that adapts judgment tasks to individual respondents, for example in
choice-based conjoint analysis studies (Eggers and Sattler 2009; Toubia et al. 2007).
Lowering the respondent’s burden is necessary to motivate people to participate in
research projects. Judgment tasks that fit their specific situation should help increase
perceived relevancy and enjoyment and thus their willingness to invest time and effort.

Instead of adapting the judgment task to the respondent, the researcher could retain
the task with fixed sets, but allow a respondent to skip judgments or allow for “no

596 Mark Lett (2012) 23:585–601



opinion” ratings for unfamiliar brands or irrelevant attributes. The resulting data
matrix will contain missing values. One could accommodate for such missing values
by removing rows entirely if one observation is missing, and applying the method-
ology described in this paper. Alternatively, Green and Douglas Carroll (1988) and
Van de Velden and Takane (2011) proposed alternative methods involving data
imputation in such settings.

Most markets also have become international in nature, so marketing research tends
to study and compare multiple national or regional markets. Despite the general
convergence of markets, not all of them contain identical sets of competitors. Therefore,
any simultaneous study of multiple markets must account for differences in competitive
settings. Our perceptual mapping procedure can accommodate such differences in a
natural way and support the required simultaneous assessment of brand image across
multiple national markets, even if these markets include varying brand sets.

6.2 Limitations and further research

A key disadvantage of compositional methods had been that the researcher must
predetermine the sets. Our approach deals with this disadvantage, yet does so within
the framework of compositional methods. Therefore, the perceptual maps reflect brands
rated on specific attributes. Additional research should extend our comparison to include
decompositional methods to assess their relative ease of use and the resulting maps.

Our approach is based on matrix algebra, not statistical modeling. Therefore, it
requires no distributional assumptions. Consequently, this method does not yield test
statistics and corresponding p values. The stability of perceptual maps, however, can
be assessed using bootstrapping methods (e.g., Torres and Bijmolt 2009; Van de
Velden et al. 2011) and we recommend further research that develops a bootstrapping
procedure to assess the stability of the entire perceptual map and each specific point.

In our experimental and empirical studies, we have applied our perceptual map-
ping procedure to various datasets. Although the procedure is very flexible in terms of
the size and variability of the brand and attribute sets, further research should assess
the application limits of this method, and of perceptual mapping in general. What
happens if the set of brands common to almost all consumers is very small? What
happens if the total set of brands is extremely large? Extended applications, such as
those in international or online settings, depend on these and related issues.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix I

Crucial in the generalized canonical correlation analysis approach employed in this
paper, are diagonal selection matrices Ki with elements

Ki
jj ¼

1 if brand j is evaluated by subject i;
0 else:

�
ð1Þ
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By adding M �Mi rows to each observed matrix Xi and rearranging the rows to
ensure they correspond to the same brands across the different data matrices, we
obtain Nmatrices, X�

i of orderM � Pi. Multiplying both X�
i and Y withKi in advance

reveals the observed rows for respondent i, such that zero-value rows correspond to
unobserved brands.

Thus we can formulate the objective function of the generalized canonical corre-
lation analysis with missing rows as:

min
Ai;Y

trace
XN
i¼1

KiY�KiX
�
iAi

� �0
KiY�KiX

�
i Ai

� �
; ð2Þ

with the constraints Y0KY ¼ NIQ and K ¼PN
i¼1 Ki. Let Y� ¼ ffiffiffiffi

N
p

K
1
2Y, so

Y�0Y� ¼ IQ. A group configuration Y that minimizes Eq. 2 under the constraints

Y0KY ¼ NIQ and K ¼PN
i¼1 Ki. Let Y� ¼ ffiffiffiffi

N
p

K
1
2Y, so Y�0Y� ¼ IQ can be obtained

from the following eigenvalue equation:

1

N
K�1

2

XN
i¼1

KiX
�
i X�0

i KiX
�
i

� ��1
X�0

i Ki

 !
K�1

2Y� ¼ Y� Λ; ð3Þ

where Λ i s a d iagona l mat r ix wi th the Q l a rges t e igenva lues of

1
N K�1

2
PN
i¼1

KiX�
i X�0

i KiX�
i

� ��1
X�0

i Ki

� 	
K�1

2 as elements; the columns of Y� are the

corresponding eigenvectors. Next, the matrices Ai can be calculated as

Ai ¼ X�0
i KiX

�
i

� ��1
X�0

i KiY: ð4Þ

By taking their inverse, we implicitly assume that the matrices X�0
i KiX�

i are
nonsingular, which often is inaccurate. We do not impose an explicit restriction on
each respondent, such as demanding that they specify more brands than attributes.
Instead, we replace the inverse in Eq. 4 with the Moore–Penrose inverse which takes
care of the dependencies between columns.

A complete derivation of these results appears in Van de Velden and Bijmolt
(2006), who also confirm that this procedure compares favorably, in terms of fit and
parameter recovery, to an alternative procedure called GENCOM (Green and Douglas
Carroll 1988).

Appendix II: Measurement of Evaluation Dimensions

Attribute relevance (α00.67)

– The attributes I used to evaluate the supermarkets are the most important
attributes of supermarkets.

– The judgment task I just did included several unimportant attributes (r).
– I understand very well what is meant with the various attributes I used in the

evaluations.
– I know a lot about the attributes that I just used in the evaluations.
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Brand knowledge (α00.70)

– The supermarkets that I just rated are the most relevant supermarkets to me.
– I know all supermarkets that I just evaluated.
– When making the evaluations, I had sufficient knowledge about the various

supermarkets.
– I had problems rating some of the supermarkets, because I do not know them that

well (r).

Judgment certainty (α00.77)

– I could make the evaluations with high certainty.
– I knew often precisely what score I should give.
– With many judgments, I had serious doubts what rating I should give (r).

Task simplicity (α00.67)

– The judgment task was difficult (r).
– The judgment task was fatiguing (r).
– The judgment task was easy to do.

Task attitude (α00.83)

– The judgment task was fun to do.
– Evaluating the supermarkets was a tedious task (r).
– The judgment task was boring (r).

Notes: (r)0reverse coded.
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