
X-Stream: Edge-centric Graph Processing

using Streaming Partitions

Amitabha Roy, Ivo Mihailovic, Willy Zwaenepoel

{amitabha.roy, ivo.mihailovic, willy.zwaenepoel}@epfl.ch

EPFL

Abstract

X-Stream is a system for processing both in-memory

and out-of-core graphs on a single shared-memory ma-

chine. While retaining the scatter-gather programming

model with state stored in the vertices, X-Stream is novel

in (i) using an edge-centric rather than a vertex-centric

implementation of this model, and (ii) streaming com-

pletely unordered edge lists rather than performing ran-

dom access. This design is motivated by the fact that

sequential bandwidth for all storage media (main mem-

ory, SSD, and magnetic disk) is substantially larger than

random access bandwidth.

We demonstrate that a large number of graph algorithms

can be expressed using the edge-centric scatter-gather

model. The resulting implementations scale well in

terms of number of cores, in terms of number of I/O

devices, and across different storage media. X-Stream

competes favorably with existing systems for graph pro-

cessing. Besides sequential access, we identify as one of

the main contributors to better performance the fact that

X-Stream does not need to sort edge lists during pre-

processing.

1 Introduction

Analytics over large graphs is an application that is be-

ginning to attract significant attention in the research

community. Part of the reason for this upsurge of in-

terest is the great variety of information that is naturally

encoded as graphs. Graph processing poses an interest-

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

SOSP ’13, Nov 03-06 2013, Farmington, PA, USA ACM 978-1-4503-

2388-8/13/11. http://dx.doi.org/10.1145/2517349.2522740

vertex_scatter(vertex v)

send updates over outgoing edges of v

vertex_gather(vertex v)

apply updates from inbound edges of v

while not done

for all vertices v that need to scatter updates

vertex_scatter(v)

for all vertices v that have updates

vertex_gather(v)

Figure 1: Vertex-centric Scatter-Gather

ing systems challenge: the lack of access locality when

traversing edges makes obtaining good performance dif-

ficult [39].

This paper presents X-Stream, a system for scale-up

graph processing on a single shared-memory machine.

Similar to systems such as Pregel [40] and Power-

graph [31], X-Stream maintains state in the vertices, and

exposes a scatter-gather programming model. The com-

putation is structured as a loop, each iteration of which

consists of a scatter phase followed by a gather phase.

Figure 1 illustrates the common vertex-centric imple-

mentation of the scatter-gather programming model.

Both the scatter and the gather phase iterate over all ver-

tices. The user provides a scatter function to propagate

vertex state to neighbors and a gather function to ac-

cumulate updates from neighbors to recompute the ver-

tex state. This simple programming model is sufficient

for a variety of graph algorithms [40, 31, 54] ranging

from computing shortest paths to ranking web pages in a

search engine, and hence is a popular interface for graph

processing systems.

The accepted (and intuitive) approach to scale-up

graph processing, for both in-memory [33] and out-of-

core [43] graphs, is to sort the edges of the graph by orig-

inating vertex and build an index over the sorted edge

list. The execution then involves random access through

the index to locate edges connected to a vertex. Implicit

in this design is a tradeoff between sequential and ran-

dom access, favoring a small number of random accesses

through an index in order to locate edges connected to an

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147997415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

edge_scatter(edge e)

send update over e

update_gather(update u)

apply update u to u.destination

while not done

for all edges e

edge_scatter(e)

for all updates u

update_gather(u)

Figure 2: Edge-centric Scatter-Gather

active vertex, over streaming a large number of (poten-

tially) unrelated edges and picking up those connected

to active vertices. It is this tradeoff that is revisited in

this paper.

Random access to any storage medium delivers less

bandwidth than sequential access. For instance, on our

testbed (16 core/64 GB 1U server, 7200 RPM 3TB mag-

netic disk and 200 GB PCIe SSD), bandwidth for se-

quential reads compared to random reads is 500 times

higher for disks and 30 times higher for SSDs. Even for

main memory, as a result of hardware prefetching, se-

quential bandwidth outstrips random access bandwidth

by a factor of 4.6 for a single core and by a factor of 1.8

for 16 cores. See §5.1 for more details.

We demonstrate in this paper that the larger band-

width of sequential access can be exploited to build a

graph processing system based purely on the principle of

streaming data from storage. We show that this design

leads to an efficient graph processing system for both

in-memory graphs and out-of-core graphs that, in a sur-

prising number of cases, equals or outperforms systems

built around random access through an index.

To achieve this level of performance, X-Stream intro-

duces an edge-centric approach to scatter-gather pro-

cessing, shown in Figure 2: the scatter and gather phase

iterate over edges and updates on edges rather than over

vertices. This edge-centric approach altogether avoids

random access into the set of edges, instead streaming

them from storage. For graphs with the common prop-

erty that the edge set is much larger than the vertex set,

access to edges and updates dominates the processing

cost, and therefore streaming the edges is often advan-

tageous compared to accessing them randomly. Doing

so comes, however, at the cost of random access into

the set of vertices. We mitigate this cost using stream-

ing partitions: we partition the set of vertices such that

each partition fits in high-speed memory (the CPU cache

for in-memory graphs and main memory for out-of-core

graphs). Furthermore, we partition the set of edges such

that edges appear in the same partition as their source

vertex. We then process the graph one partition at a

time, first reading in its vertex set and then streaming

its edge set from storage. A positive consequence of this

approach is that we do not need to sort the edge list,

thereby not incurring the pre-processing delays in other

systems [33, 37].

Graphchi [37] was the first system to explore the idea

of avoiding random access to edges. Graphchi uses a

novel out-of-core data structure that consists of parti-

tions of the graph called ’shards’. Unlike streaming par-

titions, shards have to be pre-sorted by source vertex, a

significant pre-processing cost, especially if the graph is

not used repeatedly. Graphchi also continues to use the

vertex-centric implementation in Figure 1. This requires

the entire shard - vertices and all of their incoming and

outgoing edges - to be present in memory at the same

time, leading to a larger number of shards than stream-

ing partitions, the latter requiring only the vertex state to

be in memory. Streaming partitions therefore take bet-

ter advantage of sequential streaming bandwidth. Shards

also require a re-sort of the edges by destination vertex

in order to direct updates to vertices in the gather step.

This paper makes the following contributions through

the design, implementation and evaluation of X-Stream:

• We introduce edge-centric processing as a new

model for graph computation and show that it can

be applied to a variety of graph algorithms.

• We show how the edge-centric processing model

can be implemented using streaming partitions

both for in-memory and out-of-core graphs, merely

by using different partition sizes for different me-

dia.

• We demonstrate that X-Stream scales well in terms

of number of cores, I/O devices and across different

storage media. For instance, X-Stream identifies

weakly connected components in graphs with up to

512 million edges in memory within 28 seconds,

with up to 4 billion edges from SSD in 33 minutes,

and with up to 64 billion edges from magnetic disk

in under 26 hours.

• We compare X-Stream to alternative graph process-

ing systems, and show that it equals or outperforms

vertex-centric and index-based systems on a num-

ber of graph algorithms for both in-memory and

out-of-core graphs.

2 The X-Stream Processing Model

X-Stream presents to the user a graph computation

model in which the mutable state of the computation is

stored in the vertices, more precisely in the data field

of each vertex. The input to X-Stream is an unordered

set of directed edges. Undirected graphs are represented

using a pair of directed edges, one in each direction.

X-Stream provides two principal API methods for ex-

pressing graph computations. Edge-centric scatter takes

as input an edge, and computes, based on the data field

of its source vertex, whether an update value needs to

be sent to its destination vertex, and, if so, the value of

that update. Edge-centric gather takes as input an up-

date, and uses its value to recompute the data field of its

destination vertex.

The overall computation is structured as a loop, termi-

nating when some application-specific termination cri-

terion is met. Each loop iteration consists of a scatter

phase followed by a gather phase. The scatter phase iter-

ates over all edges and applies the scatter method to each

edge. The gather phase iterates over all updates pro-

duced in the scatter phase and applies the gather method

to each update. Hence, X-Stream’s edge-centric scat-

ter gather is synchronous and guarantees that all updates

from a previous scatter phase are seen only after the scat-

ter is completed and before the next scatter phase is be-

gun. In this sense it is similar to distributed graph pro-

cessing systems such as Pregel [40].

2.1 Streams

X-Stream uses streaming to implement the graph com-

putation model described above. An input stream has

one method, namely read the next item from the stream.

An input stream is read in its entirety, one item at a time.

An output stream also has one method, namely append

an item to the stream.

The scatter phase of the computation takes the edges as

the input stream, and produces an output stream of up-

dates. In each iteration it reads an edge, reads the data

field of its source vertex, and, if needed, appends an up-

date to the output stream. The gather phase takes the

updates produced in the scatter phase as its input stream.

It does not produce any output stream. For each update

in the input stream, it updates the data value of its desti-

nation vertex.

The idea of using streams for graph computation applies

both to in-memory and out-of-core graphs. To unify the

presentation, we use the following terminology. We re-

fer to caches in the case of in-memory graphs and to

main memory in the case of out-of-core graphs as Fast

Storage. We refer to main memory in the case of in-

memory graphs and to SSD or disks in the case of out-

of-core graphs as Slow Storage.

Figure 3 shows how memory is accessed in the edge

streaming model. The appeal of the streaming approach

1. Edge Centric Scatter

2. Edge Centric Gather

Edges (sequential read)

Updates (sequential write)

Vertices (random read/write)

Updates (sequential read)

Vertices (random read/write)

Figure 3: Streaming Memory Access

to graph processing stems from the fact that it allows se-

quential (and therefore much faster) access to Slow Stor-

age for the (usually large) edge and update streams. The

problem is that it requires random access to the vertices,

which for large graphs may not fit in Fast Storage. To

solve this problem, we introduce the notion of streaming

partitions, described next.

2.2 Streaming Partitions

A streaming partition consists of a vertex set, an edge

list, and an update list. The vertex set of a streaming

partition is a subset of the vertex set of the graph. The

vertex sets of different streaming partitions are mutually

disjoint, and their union equals the vertex set of the en-

tire graph. The edge list of a streaming partition consists

of all edges whose source vertex is in the partition’s ver-

tex set. The update list of a streaming partition consists

of all updates whose destination vertex is in the parti-

tion’s vertex set.

The number of streaming partitions stays fixed through-

out the computation. During initialization, the vertex set

of the entire graph is partitioned into vertex sets for the

different partitions, and the edge list of each partition is

computed. These vertex sets and edge lists also remain

fixed during the entire computation. The update list of

a partition, however, varies over time: it is recomputed

before every gather phase, as described next.

2.3 Scatter-Gather with Partitions

With streaming partitions, the scatter phase iterates over

all streaming partitions, rather than over all edges, as

described before. Similarly, the gather phase also iter-

ates over all streaming partitions, rather than over all

scatter phase:

for each streaming_partition p

read in vertex set of p

for each edge e in edge list of p

edge_scatter(e): append update to Uout

shuffle phase:

for each update u in Uout

let p = partition containing target of u

append u to Uin(p)

destroy Uout

gather phase:

for each streaming_partition p

read in vertex set of p

for each update u in Uin(p)

edge_gather(u)

destroy Uin(p)

Figure 4: Edge-Centric Scatter-Gather with Stream-

ing Partitions

updates. Figure 4 details pseudocode for edge-centric

scatter-gather using streaming partitions.

For each streaming partition, the scatter phase reads its

vertex set, streams in its edge list, and produces an out-

put stream of updates. This output stream is appended

to a list Uout. These updates need to be re-arranged

such that each update appears in the update list of the

streaming partition containing its destination vertex. We

call this the shuffle phase. The shuffle takes as its input

stream the updates produced in the scatter phase, and

moves each update to the update list Uin(p), where p

is the streaming partition containing the destination ver-

tex of the update. After the shuffle phase is completed,

the gather phase can start. For each streaming partition,

we read its vertex set, stream in its update list, and com-

pute new values for the data fields of the vertices as we

read updates from the update list.

Streaming partitions are a natural unit of parallelism for

both the scatter and the gather phase. We will show how

to take advantage of this parallelism in §4.

2.4 Size and Number of Partitions

Choosing the correct number of streaming partitions is

critical to performance. On the one hand, in order to

produce fast random access to the vertices, all vertices

of a streaming partition must fit in Fast Storage. On the

other hand, in order to maximize the sequential nature

of access to Slow Storage to load the edge lists and the

update lists of a streaming partition, their number must

be kept as small as possible. We restrict the vertex sets of

streaming partitions to be of equal size. As a result, we

choose the number of the streaming partitions such that,

allowing for buffers and other auxiliary data structures,

the vertex set of each streaming partition fills up Fast

Storage.

2.5 API Limitations and Extensions

Unlike vertex-centric graph processing APIs, there are

no means to iterate over the edges or updates belonging

to a vertex in X-Stream’s edge-centric API. However,

in addition to allowing the user to specify edge scat-

ter and gather functions, X-Stream also supports vertex

iteration, which simply iterates over all vertices in the

graph, applying a user-specified function on each vertex.

This is useful for initialization and for various aggrega-

tion operations.

X-Stream also supports interfaces other than edge-

centric scatter-gather. For example, X-Stream supports

the semi-streaming model for graphs [26] or graph algo-

rithms that are built on top of the W-Stream model [14].

Although these models allow a richer set of graph algo-

rithms to be expressed, we focus on the more familiar

scatter-gather mode of operation in this paper.

3 Out-of-core Streaming Engine

The input to the out-of-core graph processing engine is

a file containing the unordered edge list of the graph.

In addition, we store three disk files for each streaming

partition: a file each for the vertices, edges and updates.

As we saw in Section 2, with the edge-centric scatter-

gather model, sequential access is easy to achieve for

the scatter and gather phases. The hard part is to achieve

sequential access for the shuffle phase. To do so for

out-of-core graphs, we slightly modify the computation

structure suggested in Figure 4. Instead of a strict se-

quence of scatter, shuffle and gather phases, we fold the

shuffle phase into the scatter phase. In particular, we run

the scatter phase, appending updates to an in-memory

buffer. Whenever that buffer becomes full, we run an

in-memory shuffle, which partitions the list of updates in

the in-memory buffer into (in-memory) lists of updates

for vertices in the different partitions, and then appends

those lists to the disk files for the updates of each parti-

tion.

3.1 In-memory Data Structures

Besides the vertex array used to store the vertices of a

streaming partition, we need in-memory data structures

to hold input from disk (edges during the scatter phase

and updates during the gather phase), the input and the

output of the in-memory shuffle phase, and output to

disk (updates after each in-memory shuffle phase). In

order to avoid the overhead of dynamic memory allo-

cation, we designed a statically sized and statically al-

located data structure, the stream buffer, to store these

variable-sized data items. A stream buffer consists of a

Chunk

Chunk Array

Index Array (K entries)

Figure 5: Stream Buffer (K: number of partitions)

merged scatter/shuffle phase:

for each streaming partition s

while edges left in s

load next chunk of edges into input buffer

for each edge e in memory

edge_scatter(e) appending to output buffer

if output buffer is full or no more edges

in-memory shuffle output buffer

for each streaming partition p

append chunk p to update file for p

gather phase:

for each streaming_partition p

read in vertex set of p

while updates left in p

load next chunk of updates into input buffer

for each update u in input buffer

edge_gather(u)

write vertex set of p

Figure 6: Disk Streaming Loop

(large) array of bytes called the chunk array, and an in-

dex array with K entries for K streaming partitions (see

Figure 5). The i-th entry in the index array describes the

chunk of the chunk array with data relating to the i-th

partition.

Using two streaming buffers, the in-memory shuffle be-

comes straightforward. One streaming buffer is used to

store the updates resulting from the scatter phase. A sec-

ond streaming buffer is used to store the result of the

in-memory shuffle. We make one pass over the input

buffer counting the updates destined for each partition.

We then fill in the index array of the second streaming

buffer. Finally, we copy the updates from the first buffer

to the appropriate location in the chunk array of the sec-

ond buffer.

3.2 Operation

The disk engine begins by partitioning the input edge list

into different streaming partitions. Interestingly, this can

be done efficiently by using the in-memory shuffle. The

successive parts of the input edge list are read in from

disk to a streaming buffer, shuffled into another stream-

ing buffer, and then written to the disk files containing

the edge lists of the streaming partitions.

After this pre-processing step, the graph processing en-

gine then enters the main processing loop, depicted in

Figure 6.

Finally, we implemented a couple of optimizations.

First, if the entire vertex set fits into memory, the ver-

tex array need not be written out to disk at the end of

the gather phase. Second, if all updates for the entire

scatter phase fit into a streaming buffer, then the updates

are not written back to disk after the in-memory shuffle.

Instead, the gather phase simply reuses the in-memory

output of the shuffle.

3.3 Disk I/O

X-Stream performs asynchronous direct I/O to and from

the stream buffer, bypassing the operating system’s page

cache. We use an additional 4K page per streaming par-

tition to keep I/O aligned, regardless of the starting point

of a chunk in a streaming buffer.

We actively prefetch from a stream, exploiting the se-

quentiality of access. As soon as a read into one input

stream buffer is completed, we start the next read into a

second input stream buffer. Similarly, the writes to disk

of the chunks in one output buffer are overlapped with

computing the updates of the scatter phase into another

output buffer. This requires allocating an extra stream

buffer for input and an extra one for output. We found

this prefetch distance of one, both on input and output,

sufficient to keep the disks 100% busy in our experi-

ments. A deeper prefetch can effectively be achieved

with a larger chunk array, if necessary.

X-Stream transparently exploits RAID architectures.

The sequential writes stripe the files across disks, and

the sequential reads of these striped files achieve a mul-

tiplication of bandwidth compared to single disks. We

can also exploit parallelism between the input and output

files, which can be placed on different disks. X-Stream

does asynchronous I/O using dedicated I/O threads and

spawns one thread for each disk. One can therefore put

the edges and updates on different disks, doing I/O to

them in parallel.

X-Stream’s I/O design is also well suited for use with

SSDs. All X-Stream writes are sequential and therefore

avoid the problem of write amplification [34], in a man-

ner similar to log-structured filesystems [52] and mem-

ory allocators built specifically for flash devices [16].

Many modern flash translation layers in fact implement

a log-structured filesystem in firmware. X-Stream’s se-

quential writes can be a considered a best case for such

firmware. In addition, we always truncate files when the

streams they contain are destroyed. On most operating

systems, truncation automatically translates into a TRIM

command sent to the SSD, freeing up blocks and thereby

reducing pressure on the SSD garbage collector.

3.4 Number of Partitions

Given a fixed amount of memory, the need to size stream

buffers properly creates additional requirements on the

number of streaming partitions beyond simply the need

to fit the vertex set of the streaming partition in memory.

We need to issue large enough units of I/O to approach

streaming bandwidth to disk. Assuming a uniform dis-

tribution of updates across streaming partitions, and as-

suming we need to issue I/O request of S bytes to achieve

maximum I/O bandwidth, we need to size the chunk ar-

ray to at least S∗K bytes for K streaming partitions. Our

design requires two stream buffers each for the input and

output streams in order to support prefetching. In addi-

tion we need a stream buffer for shuffling: a total of 5. If

we assume that N is total space taken by the vertices and

M is the total amount of main memory available then our

requirements translate to: N
K
+ 5SK ≤ M.

Viable solutions to this inequality exist even for very

large graphs. The left hand side reaches a minimum at

K =
√

N
5S

at which point the minimum amount of mem-

ory needed is 2
√

5NS. For an I/O unit of S = 16MB

(justified in §5) the minimum amount of main memory

required for a graph with total vertex data size as large

as N = 1TB is therefore only M = 17GB with under

K = 120 streaming partitions. This ignores the overhead

of the index data which would have come to an addi-

tional 5KB in our design.

4 In-memory Streaming Engine

The in-memory engine is designed for processing graphs

whose vertices, edges and updates fit in memory. Our

main concern in designing the in-memory streaming en-

gine is parallelism. We need all available cores in a

system to reach peak streaming bandwidth to memory.

In addition, parallelism was important in order to use

all available computational resources (such as floating

point units). We therefore discuss the important build-

ing blocks for parallelism in the in-memory streaming

engine. A second concern was that the in-memory en-

gine must deal with a larger number of partitions than

the out-of-core streaming engine. This necessitates the

use of a multi-stage shuffler, described in §4.2.

The in-memory engine considers the CPU caches when

choosing the number of streaming partitions and aims to

fit the vertex data corresponding to each partition in the

CPU cache. Unlike disks, we do not have direct con-

trol on block allocation in CPU caches. The in-memory

streaming engine must also consider additional data that

must be brought in without displacing the vertices. Ob-

serving that an edge and an update must refer to a vertex

1 2 ... K 1 2 ... K1 2 ... K

Slice 1 Slice 2 Slice P

Thread 1

Write Read

Thread 2

Write Read

Thread P

Write Read

Figure 7: Slicing a Streaming Buffer

without displacing it from cache, the in-memory stream-

ing engine therefore calculates the vertex footprint as the

sum of vertex data size, edge size and update size. It then

divides the total footprint of all vertices in the graph by

the size of the available CPU cache to arrive at the final

number of streaming partitions.

The engine needs exactly three stream buffers, one to

hold the edges of the graph, one to hold generated up-

dates and one more to be used during shuffling. We start

by loading the edges into the input stream buffer and

shuffling them into a chunk of edges for each stream-

ing partition. We then process streaming partitions one

by one generating updates from the streaming partitions

in the scatter phase. All the generated updates are ap-

pended into a single output stream buffer. The output

stream buffer is then shuffled into chunks of updates

per streaming partition, which are then absorbed in the

gather phase.

4.1 Parallel Scatter-Gather

Our approach to parallelizing the scatter and gather

phases rests on the observation that the streaming opera-

tion can be done independently for different streaming

partitions. Supporting parallel scatter-gather requires

awareness of shared caches when calculating the num-

ber of streaming partitions. We assume underlying cores

receive equal shares of a shared cache.

The threads executing different streaming partitions are

still required to append their updates to the same chunk

array. Each thread first writes to a private buffer (of size

8K), which is flushed to the shared output chunk array,

by first atomically reserving space at the end and then

appending the contents of the private buffer.

Executing streaming partitions in parallel can lead to sig-

nificant workload imbalance as the partitions can have

different numbers of edges assigned to them. We there-

fore implemented work stealing in X-Stream, allowing

threads to steal streaming partitions from each other.

This lets us avoid the work imbalance problem that re-

quires specialized solutions for in-memory [44] or scale

out [31] graph processing systems.

4.2 Parallel Multistage Shuffler

The in-memory engine must deal with a larger number

of partitions than the out-of-core engine as CPU caches

are small in size with respect to main memory and cur-

rent architectural trends indicate that they are unlikely

to grow further [27]. Repeating the analysis in § 3.4,

for a graph with 1TB of vertex data (on a system with

more than 1TB RAM) and a 1MB CPU cache we need at

least 1M partitions to ensure that the randomly accessed

vertex data for each partition fits in CPU cache (even ex-

cluding the rest of the vertex footprint). Shuffling into

a large number of partitions leads to a significant chal-

lenge in maintaining our design goal of exploiting se-

quential access bandwidth to memory.

Sequential access from the CPU core provides higher

bandwidth to memory for two reasons. The first is

that microprocessors (such as the current generation x86

one used in our experiments) usually come with hard-

ware prefetchers that can track multiple streams. Hav-

ing the prefetchers track the input and output streams

is beneficial in hiding the latency of access to mem-

ory (the primary source of higher bandwidth for sequen-

tial accesses). Increasing the number of partitions be-

yond a point means that we lose the benefit of hardware

prefetchers. The second benefit of sequential accesses

is due to maximum spatial locality as each cacheline is

fully used before being evicted. This is only possible

if we can fit a cacheline from the input stream and all

output streams in the cache. With a larger number of

partitions this is no longer the case (SRAM caches clos-

est to the core typically fit only 512 to 1024 64-byte

cachelines).

Inspired by solutions to similar problems in cache-

conscious sorting [51] and in systems such as

Phoenix [45] or tiled map-reduce [24], we implemented

a multi-stage shuffler for the in-memory engine in X-

Stream. We group partitions together into a tree hierar-

chy, with a branching factor (we term this the fanout) of

F. This is done in X-Stream by enforcing that the num-

ber of streaming partitions for the in-memory engine is

a power of two and also setting the fanout of the tree to

a power of two. The tree is then implicitly maintained

by using the most significant b bits of the partition ID to

choose between between groupings at a tree level with

2b nodes. We then do one shuffle step for each level

in this tree. The input consists of a stream buffer with as

many chunks as nodes at that level in the tree. Each input

chunk is shuffled into F output chunks. Given a target of

K partitions, the multi-stage shuffler can therefore shuf-

fle the input into K chunks in⌈logF K⌉ steps down the

tree. We use exactly two stream buffers in the shuffle

process, alternating them between the input and output

roles.

The fanout F can be set keeping in mind the constraints

described above. For the experiments in this paper, we

bounded it to the number of cachelines available in the

CPU cache. In most cases, however, we are also within

the limit of the number of tracked streams in the hard-

ware prefetcher, which is a micro-architectural detail we

did not specifically tune for.

We observe that a stream buffer typically carries many

more objects than partitions. Our experiments (§5) on

graphs result in in-memory streams with over a billion

objects but never require more than 1K partitions. This

causes shuffling to be cheaper than sorting even with

multiple stages, a point we return to in the evaluation.

In order to enable parallelism in the multi-stage shuffler,

we required the ability to have threads work in parallel

on stream buffers, without needing synchronization. Our

solution is to assign X-Stream threads disjoint equally

sized slices of the stream buffer. Each thread receives

exactly one slice. Figure 7 shows how a stream buffer

is sliced across threads. Each thread has an independent

index array describing chunks in its slice of the stream

buffer. A thread is only allowed to access its own slice

during shuffling. We parallelize the shuffle step by as-

signing each thread to shuffle its own slice. Since the

number of target partitions is the same across all the

threads, they all end up with the final slice in the same

output stream buffer, at which point they synchronize.

The chunk corresponding to a streaming partition is the

union of the corresponding chunks from all the slices.

A thread can therefore recover a chunk during the scat-

ter and gather steps from the sliced stream buffer us-

ing sequential accesses plus at most P random accesses,

where P is the number of threads. Usually the number

of threads P is far smaller than the number of objects in

the chunk, rendering the random access negligible.

4.3 Layering over Disk Streaming

The in-memory engine is logically layered above the

out-of-core engine. We do so by allowing the disk en-

gine to independently choose its count of streaming par-

titions. For each iteration of the streaming loop in Fig-

ure 6, the loaded input chunk is processed using the in-

memory engine that then independently chooses a fur-

ther in-memory partitioning for the current disk parti-

tion.

This allows us to ensure that we maximize usage of main

memory bandwidth and computational resources with

the out-of-core streaming engine. The slower disk con-

tinues to remain a bottleneck in all cases, even when us-

ing faster disks such as SSDs and using floating-point

computation in some graph algorithms.

5 Evaluation

5.1 Experimental Environment

Our testbed is an AMD Opteron (6272, 2.1Ghz), dual-

socket, 32-core system. The CPU uses a clustered core

micro-architecture, with a pair of cores sharing the in-

struction cache, floating point units and L2 cache. The

system is equipped with 64GB of main memory; two

200GB PCI Express SSDs arranged into a software

RAID-0 configuration and two 3 TB SATA-II magnetic

disks also arranged into a software RAID-0 configura-

tion.

We first measured the streaming bandwidth available

from main memory. We used a microbenchmark, in

which each thread read from or wrote to a thread-private

buffer of size 256 MB (well beyond the capacity of the

L3 cache and TLBs). The results in Figure 8 show that

for reads memory bandwidth saturates with 16 cores at

approximately 25GB/s. Adding 16 more cores increases

the available bandwidth by only 5%. We therefore use

only 16 cores of the system, as memory bandwidth, the

critical resource for graph processing, is already satu-

rated with just 16 cores. We run a single thread on one

core of each pair of clustered cores, leaving the other

core of each pair unused. When determining the number

of partitions for in-memory graphs, we assume that each

core has exclusive access to its 2MB shared L2 cache

We used the fio [1] tool to benchmark the streaming

bandwidth of the RAID-0 SSD and disk pairs in our

testbed. Our workload issues a single synchronous re-

quest at a time, and varies the size of the request. The

results are shown in Figure 9. An interesting aspect there

is that SSD write bandwidth shows a temporary drop

with a 512K request size. This is likely due to the flash

translation layer not being able to keep up at this write

request size. Bandwidth for both SSD and disk shows a

sharp increase at 1M request sizes. The RAID stripe unit

is 512K, and hence past 1M the request is striped across

the SSDs or disks in the RAID-0 pair, explaining the in-

crease in bandwidth. Figure 9 also shows that for reads

both the SSDs and the disks are saturated with sequen-

tial requests of size 16MB. We therefore chose 16MB as

our preferred I/O unit size for the out-of-core engine.

We also measured random access bandwidth by access-

ing entirely a randomly chosen cacheline from an in-

memory buffer or by doing synchronous 4K transfers

from an out-of-core file. Figure 11 shows that sequential

access beats random access for every medium, with an

increasing gap as we move to slower media. For main

memory, it is necessary to use all available cores to sat-

urate memory bandwidth. Random write performance is

better than random read performance. For main mem-

ory, this is due to the write-coalescing buffers present in

the AMD 6272 micro-architecture. For the out-of-core

case, this is due to the write cache on the disk absorbing

the writes, allowing the next write to be issued while the

previous one is outstanding.

5.2 Algorithms and Graphs

We evaluate X-Stream using the following algorithms:

• Weakly Connected Components (WCC).

• Strongly Connected Components (SCC), using [47]. Re-

quires a directed graph.

• Single-Source Shortest Paths (SSSP).

• Minimum Cost Spanning Tree (MCST) using the

GHS [30] algorithm.

• Maximal Independent Set (MIS).

• Conductance [20].

• SpMV: Multiply the sparse adjacency matrix of a di-

rected graph with a vector of values, one per vertex.

• Pagerank [42] (5 iterations).

• Alternating Least Squares (ALS) [55] (5 iterations). Re-

quires a bipartite graph.

• Bayesian Belief Propagation (BP) [35] (5 iterations).

We used both synthetic and real-world (Figure 10) graph

datasets to evaluate X-Stream. We generated synthetic

undirected graphs using the RMAT generator [23] and

used them to study the scaling properties and evaluate

configuration choices of X-Stream. RMAT graphs have

a scale-free property that is a feature of many real-world

graphs [17]. We use RMAT graphs with an average de-

gree of 16 (as recommended by the Graph500 bench-

mark [9]). We use the term scale n to refer to a synthetic

graph with 2n vertices and 2n+4 edges. For SCC, we as-

signed a random edge direction to the synthetic RMAT

and Friendster graphs.

All the graphs are provided to X-Stream as unordered

lists of edges. For inputs without an edge weight, we

added a random edge weight (a pseudo-random floating

point number in the range [0 1)). The footprint of ver-

tex data varied from a single byte in the case of MIS (a

boolean variable) to almost 250 bytes in the case of ALS.

 0

 5

 10

 15

 20

 25

 30

 4 8 12 16 20 24 28 32

G
B

/s

Threads

Read
Write

Figure 8: Memory bandwidth

 0

 100

 200

 300

 400

 500

 600

 700

4k 16k 64k 256k 1M 4M 16M

M
B

/s

Buffer size

Read (ssd RAID0)
Write (ssd RAID0)
Read (hdd RAID0)
Write (hdd RAID0)

Figure 9: Disk bandwidth

Name Vertices Edges Type

In-memory

amazon0601 [2] 403,394 3,387,388 Directed

cit-Patents [3] 3,774,768 16,518,948 Directed

soc-livejournal [4] 4,847,571 68,993,773 Directed

dimacs-usa [5] 23,947,347 58,333,344 Directed

Out-of-core

Twitter [36] 41.7 million 1.4 billion Directed

Friendster [6] 65.6 million 1.8 billion Undir.

sk-2005 [7] 50.6 million 1.9 billion Directed

yahoo-web [8] 1.4 billion 6.6 billion Directed

Netflix [55] 0.5 million 0.1 billion Bipartite

Figure 10: Datasets

Medium
Read (MB/s) Write (MB/s)

Random Sequential Random Sequential

RAM (1 core) 567 2605 1057 2248

RAM (16 cores) 14198 25658 10044 13384

SSD 22.5 667.69 48.6 576.5

Magnetic Disk 0.6 328 2 316.3

Figure 11: Sequential Access vs. Random Access

5.3 Applicability

We demonstrate that X-Stream’s API can be used to ex-

press a large number of graph algorithms with good per-

formance, in spite of the fact that the API does not allow

direct access to the edges associated with a vertex. Fig-

ure 12a shows how X-Stream performs on a variety of

graph algorithms, real-world datasets and storage me-

dia. The yahoo-web graph did not fit onto our SSD, so it

is absent from SSD results.

The execution time on SSD is roughly half of that on

magnetic disk reflecting the fact that the SSD deliv-

ers twice the sequential bandwidth of the magnetic disk

(Fig 9), although at a considerably greater cost per byte.

X-Stream performs well on all algorithms and data sets,

with the exception of traversal algorithms (WCC, SCC,

MIS, MSCT and SSSP) for DIMACS and the Yahoo we-

bgraph. DIMACS traversals take a long time relative to

the size of the graph, and the Yahoo webgraph did not

finish in a reasonable amount of time. We hypothesized

that the problem lies in the structure of these graphs, and

to confirm this, we implemented HyperANF [21] in X-

Stream to measure the neighborhood function of graphs.

The neighborhood function NG(t) is defined as the num-

ber of pairs of vertices reachable within t steps in the

undirected version of the graph. Figure 13 shows the

number of steps needed to converge to a constant value

for the neighborhood function, which is equal to the di-

ameter of graph. As Figure 13 shows, the Yahoo web-

graph and DIMACS have a diameter much larger than

other comparable graphs in our dataset. A high diame-

ter results in graphs with an ‘elongated’ structure, caus-

ing X-Stream to execute a very large number of scatter-

gather iterations, each of which requires streaming the

entire edge list but doing little work.

In Figure 12b we report some additional information on

the execution of WCC on the various graphs, includ-

ing 1) the number of scatter-gather steps, 2) the ratio of

total execution time to streaming time, and 3) the per-

centage of edges that were streamed and along which

no updates were sent. For DIMACS we see, as dis-

cussed above, the very large number of scatter-gather

steps. The ratio of total execution time to streaming

time is approximately 1 for out-of-core graphs, confirm-

ing that the execution time is governed by the bandwidth

of secondary storage. For in-memory graphs, the ratio

ranges roughly between 2 and 3, indicating that here too

streaming takes up an important fraction of the execution

time, but computation starts playing a role as well. The

‘wasted’ edges, i.e., edges that are streamed in but pro-

duce no updates, are a direct consequence of the tradeoff

underlying X-Stream. As Figure 12b shows, X-Stream

does waste considerable sequential bandwidth for some

algorithms. Exploring generic stream compression al-

gorithms as well as those specific to graphs [11], or per-

forming extra passes to eliminate those edges that are no

longer needed are important avenues of exploration we

are pursuing to reduce wastage in X-Stream.

We conclude that X-Stream is an efficient way to ex-

ecute a variety of algorithms on real-world graphs, its

only limitation being graphs whose structure requires a

large number of iterations.

5.4 Scalability

We study the scalability of X-Stream from two differ-

ent angles. First, we look at the improvement in per-

formance for a given graph size as more resources are

added. Second, we show that as more storage is added,

larger graphs can be handled. For these experiments, we

select two traversal algorithms (BFS and WCC) and two

sparse matrix multiplication algorithms (Pagerank and

SpMW).

Figure 14 (with both axes in log scale) shows how

X-Stream’s performance scales with increasing thread

WCC SCC SSSP MCST MIS Cond. SpMV Pagerank BP

memory

amazon0601 0.61s 1.12s 0.83s 0.37s 3.31s 0.07s 0.09s 0.25s 1.38s

cit-Patents 2.98s 0.69s 0.29s 2.35s 3.72s 0.19s 0.19s 0.74s 6.32s

soc-livejournal 7.22s 11.12s 9.60s 7.66s 15.54s 0.78s 0.74s 2.90s 1m 21s

dimacs-usa 6m 12s 9m 54s 38m 32s 4.68s 9.60s 0.26s 0.65s 2.58s 12.01s

ssd

Friendster 38m 38s 1h 8m 12s 1h 57m 52s 19m 13s 1h 16m 29s 2m 3s 3m 41s 15m 31s 52m 24s

sk-2005 44m 3s 1h 56m 58s 2h 13m 5s 19m 30s 3h 21m 18s 2m 14s 1m 59s 8m 9s 56m 29s

Twitter 19m 19s 35m 23s 32m 25s 10m 17s 47m 43s 1m 40s 1m 29s 6m 12s 42m 52s

disk

Friendster 1h 17m 18s 2h 29m 39s 3h 53m 44s 43m 19s 2h 39m 16s 4m 25s 7m 42s 32m 16s 1h 57m 36s

sk-2005 1h 30m 3s 4h 40m 49s 4h 41m 26s 39m 12s 7h 1m 21s 4m 45s 4m 12s 17m 22s 2h 24m 28s

Twitter 39m 47s 1h 39m 9s 1h 10m 12s 29m 8s 1h 42m 14s 3m 38s 3m 13s 13m 21s 2h 8m 13s

yahoo-web — — — — — 16m 32s 14m 40s 1h 21m 14s 8h 2m 58s

(a)

iters ratio wasted %

memory

amazon0601 19 2.58 63

cit-Patents 21 2.20 50

soc-livejournal 13 2.13 57

dimacs-usa 6263 1.94 98

ssd

Friendster 24 1.06 63

sk-2005 25 1.04 67

Twitter 16 1.04 55

disk

Friendster 24 1.04 63

sk-2005 25 1.04 67

Twitter 16 1.04 55

yahoo-web — — —

(b)

Figure 12: Different Algorithms on Real World Graphs: (a) Runtimes; (b) Number of scatter-gather iterations,

ratio of runtime to streaming time, and percentage of wasted edges for WCC.

Graph # steps

In-memory

amazon0601 19

cit-Patents 20

soc-livejournal 15

dimacs-usa 8122

Out-of-core

sk-2005 28

yahoo-web over 155

Figure 13: Number of Steps Taken to Cover the

Graph by HyperANF

count for the largest graph we can fit in memory (RMAT

scale 25 with 32M vertices and 512M undirected edges).

For all algorithms, performance improves linearly as

more threads are added. X-Stream is able to take advan-

tage of more memory bandwidth with increasing thread

count (Figure 8) and does not incur any synchronization

overhead.

Figure 15 shows how X-Stream’s performance scales

with an increasing number of I/O devices. We com-

pare three different configurations: with one disk/SSD,

with separate disks/SSDs for reading and writing, and

with two disks/SSDs arranged in RAID-0 fashion (our

baseline configuration). In the case of magnetic disk,

we use an RMAT scale 30 graph, and in the case of the

SSD, we use an RMAT scale 27 graph. Putting the edges

and updates on different disks/SSDs reduces runtime by

up to 30%, compared to using one disk/SSD. RAID-0

reduces runtime up to 50-60% of the runtime of using

one disk/SSD. Clearly, X-Stream’s sequential disk ac-

cess pattern allows it to fully take advantage of addi-

tional I/O devices.

The scalability of X-Stream in terms of graph size is

purely a function of the available storage on the ma-

chine: the design principle of streaming is equally ap-

plicable to all three of main memory, SSD and magnetic

disk. We limit the available memory to X-Stream to

16GB. Figure 16 (with both axes in log scale) illustrates

that X-Stream scales almost seamlessly across available

devices as graph size doubles, with the ‘bumps’ in run-

time occurring as we move to slower storage devices.

The fact that X-Stream starts from an unordered edge list

means that it can easily handle growing graphs - similar

to distributed systems such as Kineograph [25]. We used

X-Stream to add 330M edges at a time from the Twit-

ter dataset [36] to an initially empty graph. After each

addition we recomputed weakly connected components

on the graph taking into account the new edges. Fig-

ure 17 shows the recomputation time as the graph grows

in size. X-Stream is limited to only use 16GB of main

memory, forcing the graph to go to SSD. Each batch of

ingested edges is partitioned and appended to files on

the SSD and weakly connected components are recom-

puted. The time required for this grows with the size

of the accumulated graph as component labels need to

be propagated across a larger accumulated graph. How-

ever, even when the last batch of 330M added edges is

ingested before the graph reaches its peak size (1.9 bil-

lion edges) recomputation takes less than 7 minutes. In

contrast, the full graph takes around 20 minutes (Fig-

ure 12a). In summary, X-Stream can absorb new edges

with little overhead because it supports efficient recom-

putation on graphs with the newly added edges.

5.5 Comparison with Other Systems

In-memory We begin by considering the performance

of the in-memory engine as compared to other systems

that process graphs in memory. We study the effect of

the design decision made in X-Stream to stream edges

and updates rather than doing random access through an

index into their sorted version.

First, we consider the costs of actually producing sorted

formats for input graphs such as compressed sparse row.

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8 16

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
)

Threads

RMAT scale 25 graph

WCC
Pagerank

BFS
SpMV

Figure 14: Strong Scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

H
D
D
:SpM

V

H
D
D
:W

C
C

H
D
D
:Pagerank

H
D
D
:BFS

SSD
:SpM

V

SSD
:W

C
C

SSD
:Pagerank

SSD
:BFSR

u
n
ti
m

e
 n

o
rm

a
liz

e
d
 t
o
 o

n
e
 d

is
k one disk

indep. disks
RAID-0

Figure 15: I/O Parallelism

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 20 22 24 26 28 30 32

R
u
n
ti
m

e
 (

s
)

Scale

SSD

disk

SSD

disk

WCC
SpMV

Figure 16: Scaling Across Devices

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500 3000

R
e
c
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

Accumulated Graph size (millions of edges)

Twitter graph, 16 threads

Figure 17: Re-computing WCC

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 22 23 24 25

R
u

n
ti
m

e
 (

s
)

-
tr

u
n

c
a

te
d

 a
t

5
0

0

RMAT scale

RMAT graphs, one thread

quicksort
counting sort

WCC
Pagerank

BFS
SpMV

Figure 18: Sorting vs. Streaming

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 4 8 16

R
u

n
ti
m

e
 (

s
)

Threads

BFS on scale-free graph (32M vertices/256M edges)

Local Queue
Hybrid

X-Stream

Figure 19: In-memory BFS

This requires sorting the edge list and producing an in-

dex over the sorted list. Figure 18 compares the time re-

quired for sorting the edge list of various RMAT graphs

to the time required to compute results in X-Stream from

the unsorted graph. We use both quicksort (from the C

library) and counting sort (since the keyspace is known)

to sort the graph. Both of these are single-threaded, and

therefore we compare them with a single-threaded run

of X-Stream. Sorting does not scale well with increas-

ing graph size, and as a consequence X-Stream ends up

completing all the graph benchmarks faster than either

version of sorting at the largest graph size. This pro-

vides evidence that, where pre-processing times are a

concern, streaming is a winning proposition in compar-

ison to sorting and random access. For all comparisons

with other systems in this paper, we allow the other sys-

tems to start with a sorted and indexed edge list, while

also reporting pre-processing times where available. X-

Stream uses the unordered edge list as input.

We next compare the performance of X-Stream to

optimized in-memory implementations of breadth-first

search that do random access through an index over the

edges. The first method (local queue), due to Agar-

wal et. al. [12], uses a per-core queue of vertices to be

visited and heavily optimized synchronization. The sec-

ond method (hybrid), due to Hong et. al. [33], includes

significant enhancements to the other (older) piece of

work. In the comparisons we use the exact same graph

as used in Hong et. al. [33].

Figure 19 shows the performance of X-Stream, local

queue, and hybrid. The figure includes 99% confi-

dence intervals on the runtime that are too small to be

visible due to negligible variation in runtime. X-Stream

performs better than both methods for all thread counts,

albeit with a closing gap towards higher thread counts.

The reason for this closing gap in runtime is that the gap

between random and sequential memory access band-

width is also closing with increasing thread count, from

4.6X at 1 core to 1.8X at 16 cores (Figure 11). At the

same time, X-Stream sends updates on only about 35%

of the streamed edges, thereby wasting 65% of the avail-

able sequential bandwidth (a tradeoff we described in

§1).

Random access, however, enables highly effective

algorithm-specific optimizations. Beamer et al. [18]

demonstrated that for scale-free graphs large speedups

can be obtained in the later execution stages of BFS by

iterating over the set of target vertices rather than the set

of source vertices. At these later stages, the set of dis-

covered vertices has grown to cover a large portion of the

graph, and therefore a number of updates go to vertices

that are already part of the BFS tree. It is then cheaper to

pull updates by scanning neighbors from the remaining

vertices, rather than push updates by iterating over the

BFS horizon. Ligra [48] is a recent main-memory graph

processing system that implements this observation. We

compare the performance of X-Stream with Ligra on a

subset of the Twitter graph [36]. Comparing with Ligra

is, unfortunately, not a strict apples-to-apples compari-

son. Ligra runs on the Cilk runtime [29] and is compiled

with the Intel compiler, while X-Stream is built on top

of Linux pthreads and is compiled with gcc.

We list the runtimes for the two systems in Figure 20 for

BFS and Pagerank, separating the overall runtime in pre-

processing time and runtime for the computation proper.

For BFS, when considering only the computation proper,

Ligra is much faster than X-Stream (10X - 20X), but this

performance comes at a significant pre-processing cost.

Using direction reversal requires pre-processing to pro-

duce an inverted edge list, in turn requiring random ac-

cess to a large data structure in order to switch edges

from a list sorted by source to one sorted by destina-

tion. This pre-processing dominates the overall runtime,

and is about 7X-8X that of the overall running time for

X-Stream. This pre-processing time in Ligra could be

improved using counting sort instead of quicksort, or by

storing the reversed and sorted edge list in order to amor-

tize the pre-processing cost. For Pagerank, X-Stream is

faster than Ligra at all thread counts. Pagerank’s uniform

communication pattern makes direction reversal ineffec-

tive.

Finally, we analyzed the impact of the memory access

patterns on instruction throughput, comparing X-Stream

to the other in-memory graph processing solutions dis-

cussed above. Figure 21 shows the average count of in-

structions per cycle (IPC) and the total number of mem-

ory references for BFS. X-Stream shows a far higher IPC

than the other implementations. In general, a higher IPC

results either from a smaller number of main memory

references (misses in the last level cache) or from a lower

average latency to resolve memory references. For BFS,

the improved IPC cannot be explained by reduced mem-

ory references alone. In the case of Ligra, Figure 21

shows that X-Stream makes more memory references

and yet demonstrates a higher IPC. We therefore con-

clude that the higher IPC in X-Stream is due to lower

latencies for resolving memory access, a result of the

fact that sequential access allows the prefetcher to hide

some of the memory access latency.

In summary, X-Stream’s in-memory engine demon-

strates that sequential access can be a winning proposi-

tion even given the relatively small gap between random

and sequential access bandwidth to main memory and

even when compared to specialized multi-threaded im-

plementations of graph algorithms. We also underlined

an important property of X-Stream that makes it attrac-

tive for in-memory graph processing: the fact that it can

return results immediately from unordered edge lists.

Out-Of-Core We now compare the performance of X-

Stream to Graphchi [37]. Like X-Stream, Graphchi is

Threads Ligra (s) X-Stream (s) Ligra-pre (s)

BFS

1 11.10 168.50 1250.00

2 5.59 86.97 647.00

4 2.83 45.12 352.00

8 1.48 26.68 209.40

16 0.85 18.48 157.20

Pagerank

1 990.20 455.06 1264.00

2 510.60 241.56 654.00

4 269.60 129.72 355.00

8 145.40 83.42 211.40

16 79.24 50.06 160.20

Figure 20: Ligra [48] on Twitter (99%CI under 5%)

BFS [33] X-Stream

IPC 0.47 1.30

Mem refs. 982 million 620 million

Ligra,BFS [48] X-Stream

IPC 0.75 1.39

Mem refs. 1.3 billion 1.5 billion

Figure 21: Instructions per Cycle and Total Number

of Memory References for BFS

a scale-up system that can process large graphs from

secondary storage. Graphchi uses the traditional vertex-

centric approach to graph processing, but it uses an in-

novative out-of-core data structure, called parallel slid-

ing windows, to reduce the amount of random access to

disk. We used the same algorithms and graphs as re-

ported by Graphchi [37], constraining both systems to 8

GB of memory and using the SSD for storage (as done

in that work).

Figure 22 shows the results in terms of execution time.

Graphchi needs time to pre-sort the graph into shards

before beginning execution. For three out of four algo-

rithms we used to compare against Graphchi, X-Stream

finishes execution on the same unsorted graph before

Graphchi finishes sorting it into shards. This result ex-

tends the observations about sorting time for the in-

memory case in the previous section to the out-of-core

case. Moving further, we found that X-Stream finished

execution of the graph algorithm faster than Graphchi,

even excluding pre-processing time. We attribute X-

Stream’s shorter runtimes to two factors.

The first factor is the vertex-centric approach used in

Graphchi, in which updates are absorbed by vertices

by executing a loop over their in-edges. This requires

Graphchi to re-sort the edges in the shard by destina-

tion vertex after loading the shard into memory. The

creation of this reverse-sorted in-memory data struc-

ture consumes a significant amount of time, reported as

re-sort in Figure 22.

The second contributor to Graphchi’s longer runtime is

its incomplete usage of available streaming bandwidth

from the SSD. For the graphs used in this experiment,

Pre-Sort (s) Runtime (s) Re-sort (s)

Twitter pagerank

X-Stream (1) none 397.57±1.83 –

Graphchi (32) 752.32±9.07 1175.12±25.62 969.99

Netflix ALS

X-Stream (1) none 76.74±0.16 –

Graphchi (14) 123.73±4.06 138.68±26.13 45.02

RMAT27 WCC

X-Stream (1) none 867.59±2.35 –

Graphchi (24) 2149.38±41.35 2823.99±704.99 1727.01

Twitter belief prop.

X-Stream (1) none 2665.64±6.90 –

Graphchi (17) 742.42±13.50 4589.52±322.28 1717.50

Figure 22: Comparison with Graphchi on SSD with 99%

Confidence Intervals. Numbers in brackets indicate X-

Stream streaming partitions/Graphchi shards (Note: re-

sorting is included in Graphchi runtime.)

 0

 200

 400

 600

 800

R
e
a
d
s
 (

M
B

p
s
) aggregate: 416.15

GraphchiX-Stream

aggregate: 141.04

GraphchiX-Stream

 0

 200

 400

 600

 800

W
ri
te

s
 (

M
B

p
s
) aggregate: 177.42

GraphchiX-Stream

aggregate: 48.28

GraphchiX-Stream

Figure 23: Disk Bandwidth

X-Stream needs only one streaming partition, by virtue

of the fact that it only needs to fit the vertex data for

the partition into memory. In contrast, Graphchi needs

many shards, because it also needs to fit all edges of

a shard into memory. This leads to more fragmented

reads and writes that are distributed over many shards.

Figure 23 illustrates this phenomenon with an I/O band-

width report from the iostat tool. The report depicts

a 4-minute interval, after the shard creation phase for

Graphchi, of the execution of Pagerank on the Twit-

ter graph. X-Stream aggregate bandwidth use is much

higher than that of Graphchi. For X-Stream, the scatter

phase exhibits a regular pattern, alternating between a

burst of reads (from the edge file) and a burst of writes

(to the update files). The gather phase exhibits a long

burst of reads without any writes. In contrast, Graphchi’s

SSD accesses are far more bursty.

5.6 Design Decisions

First, we consider the effect of varying the number of

partitions. The number of partitions needs to be large

enough such that the vertex set of each streaming par-

tition fits in the CPU cache for in-memory graphs or in

main memory for out-of-core graphs. Too large a num-

ber of partitions, however, leads to excessive partitioning

overhead and more random accesses. Figure 24 shows

the effect of the number of partitions on the in-memory

execution time for four algorithms using the RMAT-25

graph. The execution time is relatively stable for a large

range of number of partitions, but increases substantially

when too small or too large a number is chosen.

Second, Figure 25 shows the effect of varying the num-

ber of shuffler stages for the RMAT-25 graph with 1M

(220) partitions. The figure shows total runtime for the

same four algorithms, normalized to the runtime for

a single-stage shuffler. Using a one-stage shuffler is

clearly sub-optimal due to the reasons explained in §4.2.

Using too many stages leads to unnecessary copying.

The optimal choice in this case is a two-stage shuffle,

X-Stream automatically picks the number of streaming

partitions for in-memory and out-of-core graphs, using

the amount of main memory and the cache size as in-

puts. It also automatically picks the shuffler fanout for

in-memory graphs, using the number of cache lines as

input. Space constraints prevent us from presenting the

algorithm for doing so, but in all cases that we have been

able to verify, X-Stream succeeds in choosing optimal or

near-optimal values.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

16 64 256 1k 4k 16k 64k 256k 1M

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
)

Number of partitions

RMAT scale 25 graph, 16 threads

WCC
Pagerank

BFS
SpMV

Figure 24: Effect of the Number of Partitions

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 4 5

N
o
rm

a
liz

e
d
 p

ro
c
e
s
s
in

g
 t
im

e
 (

lo
w

e
r

is
 b

e
tt
e
r)

Shuffler stages

RMAT scale 25 graph, 16 threads, 1M partitions

BFS
SpMV

Pagerank
WCC

Figure 25: Multistage Shuffling

Approach Partitions (K) Pre-processing One iteration All iterations

X-Stream
|V |
M

Nothing
|V |+|E|

B
+

|U |
B

log M
B

K D
|V |+|E|

B
+

|E|
B

log M
B

K

Graphchi (as reported in [37])
|E|
M

Sorting
|E|
B
+K2 D(|E|

B
+K2)

Sorting [51] + Random Access [33] |V | |E|
B

log M
B

min(|V |, |E|
M
) − |V |+ |E|

Figure 26: Big-O Bounds in the I/O Model (U is the set of updates)

5.7 Generalization

To express X-Stream’s capabilities and limitations in

more general terms, we examined using the theoretical

I/O model [13] the cost of propagating a message from

(any) source vertex to all other (assumed reachable) ver-

tices in a graph G = (V,E), modeling label propagation

in the graph. The maximum number of edge-centric scat-

ter phases to complete this task is the diameter of the

graph (D). The I/O model uses a “memory” of M words

backed by an infinitely sized disk from which transfers

are made in aligned units of B words. Fewer I/Os im-

plies a faster algorithm. The results in Figure 26 confirm

that X-Stream does well on low diameter graphs where

it scales better than solutions that involve first sorting

the graph. It also shows that for dense graphs, X-Stream

uses fewer partitions than Graphchi uses shards and that

it scales better than Graphchi on I/Os regardless of graph

diameter.

6 Related Work

Exploiting sequential access bandwidth has been a long-

standing theme in the algorithms community with cache-

oblivious data structures [19, 28, 50]. X-Stream is

not cache-oblivious, but aspires to the same goal of

sequential scans over data. Another closely related

area of work is stream processing. Stream process-

ing aims to analyze unbounded information flows using

only a constant amount of buffering. Specific to graphs,

there has been some success on stream processing us-

ing small [O(Vpolylog(V))] space in the semi-streaming

model [41], streaming just the edges, and more recently

with the W-Stream model [14]. This is a good fit to

streaming partitions, and we expect to implement semi-

streaming and W-Stream algorithms on X-Stream as re-

search on them progresses. X-Stream’s shuffling phase

also draws inspiration from work on sorting algorithms,

such as polyphase merging [51].

From the perspective of disks, sequential access has

been a constant theme for both magnetic disks and

SSDs [16, 46, 49]. The latency of servicing random

requests in SSDs can be hidden by concurrency in ser-

vicing them, a feature not available in magnetic disks.

This has become a viable route to graph processing from

SSDs [32, 53].

A number of distributed graph processing systems [10,

31, 40] provide scale-out solutions for graph process-

ing. X-Stream offers the alternative of using easier-to-

manage single servers. It is competitive to Graphchi,

which itself is competitive to many of these distributed

systems [37].

X-Stream is best suited to graphs with low diameter in

relation to size. There is evidence that the diameter of

real world graphs often grows only sub-logarithmically

(O(log(V)
loglog(V)

)) with the number of vertices [22] or even

demonstrates densification [38], where the diameter

shrinks with new vertices joining the network. On a

similar note, Backstrom et. al. [15] report that the av-

erage path length between two people in the 721 million

strong Facebook social network is smaller than 5.

7 Conclusion

X-Stream is an edge-centric approach to the scatter-

gather model. X-Stream uses streaming partitions to uti-

lize the sequential streaming bandwidth of the storage

medium for graph processing, scaling seamlessly across

graphs stored in main memory, on SSD and on magnetic

disk. We have demonstrated that X-Stream’s approach

is in many cases a winning proposition when compared

against the traditional approach of indexing the edge list

and performing random access through the index. A re-

lease of X-Stream is available at:

http://labos.epfl.ch/x-stream

Acknowledgments: We would like to thank Aapo Ky-

rola and Julian Shun for their help in benchmarking

Graphchi and Ligra respectively. We would also like to

thank our reviewers and shepherd as well as Ed Bugnion,

Stanko Novakovic, Eiko Yoneki and Florin Dinu for

their feedback that helped improve the paper. X-Stream

was supported by a grant from the Hasler Foundation.

References

[1] http://freecode.com/projects/fio

[2] http://snap.stanford.edu/data/

amazon0601.html

[3] http://snap.stanford.edu/data/

cit-Patents.html

[4] http://snap.stanford.edu/data/

soc-LiveJournal1.html

[5] http://dimacs.rutgers.edu/

Challenges/

[6] http://snap.stanford.edu/data/

com-Friendster.html

[7] http://www.cise.ufl.edu/research/

sparse/matrices/LAW/sk-2005.html

[8] http://webscope.sandbox.yahoo.

com/catalog.php?datatype=g

[9] http://www.graph500.org/

[10] http://incubator.apache.org/

giraph/

[11] M. Adler and M. Mitzenmacher. Towards com-

pressing web graphs. In Proceedings of the Data

Compression Conference, pages 203–212. IEEE

Computer Society, 2001.

[12] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader.

Scalable graph exploration on multicore proces-

sors. In Proceedings of the International Confer-

ence for High Performance Computing, Network-

ing, Storage and Analysis, pages 1–11. IEEE Com-

puter Society, 2010.

[13] A. Aggarwal and J. S. Vitter. The input/output

complexity of sorting and related problems. Com-

munications of the ACM, 31(9):1116–1127, 1988.

[14] G. Aggarwal, M. Datar, S. Rajagopalan, and

M. Ruhl. On the streaming model augmented with

a sorting primitive. In Proceedings of the IEEE

Symposium on Foundations of Computer Science,

pages 540–549. IEEE Computer Society, 2004.

[15] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and

S. Vigna. Four degrees of separation. CoRR,

abs/1111.4570, 2011.

[16] A. Badam and V. S. Pai. SSDAlloc: hybrid

SSD/RAM memory management made easy. In

Proceedings of the USENIX conference on Net-

worked Systems Design and Implementation, pages

16–. USENIX Association, 2011.

[17] A.-L. Barabási and R. Albert. Emergence of scal-

ing in random networks. Science, 286(5439):509–

512, 1999.

[18] S. Beamer, K. Asanović, and D. Patterson.

Direction-optimizing breadth-first search. In Pro-

ceedings of the International Conference on High

Performance Computing, Networking, Storage and

Analysis, pages 12:1–12:10. IEEE Computer Soci-

ety, 2012.

[19] M. A. Bender, G. S. Brodal, R. Fagerberg, R. Ja-

cob, and E. Vicari. Optimal sparse matrix dense

vector multiplication in the I/O-model. In Proceed-

ings of the ACM symposium on Parallel Algorithms

and Architectures, pages 61–70. ACM, 2007.

[20] N. Biggs. Algebraic Graph Theory. Cambridge

University Press, 2005.

[21] P. Boldi, M. Rosa, and S. Vigna. HyperANF: ap-

proximating the neighbourhood function of very

large graphs on a budget. In Proceedings of the In-

ternational conference on World Wide Web, pages

625–634. ACM, 2011.

[22] B. Bollobas and O. Riordan. The diameter of a

scale-free random graph. Combinatorica, 24(1):5–

34, 2004.

[23] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-

MAT: A recursive model for graph mining. In In

Proceedings of the SIAM International Conference

on Data Mining. SIAM, 2004.

[24] R. Chen, H. Chen, and B. Zang. Tiled-MapReduce:

optimizing resource usages of data-parallel appli-

cations on multicore with tiling. In Proceedings of

the International conference on Parallel Architec-

tures and Compilation Techniques, pages 523–534.

ACM, 2010.

[25] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng,

M. Wu, F. Yang, L. Zhou, F. Zhao, and E. Chen.

Kineograph: taking the pulse of a fast-changing

and connected world. In Proceedings of the ACM

European conference on Computer Systems, pages

85–98. ACM, 2012.

[26] J. Feigenbaum, S. Kannan, A. Mcgregor, and

J. Zhang. On graph problems in a semi-streaming

model. In Proceedings of the International col-

loquium on Automata, Languages and Program-

ming, pages 531–543, 2004.

[27] M. Ferdman, A. Adileh, O. Kocberber, S. Vo-

los, M. Alisafaee, D. Jevdjic, C. Kaynak, A. D.

Popescu, A. Ailamaki, and B. Falsafi. Clearing the

clouds: a study of emerging scale-out workloads

on modern hardware. In Proceedings of the Inter-

national conference on Architectural Support for

Programming Languages and Operating Systems,

pages 37–48. ACM, 2012.

[28] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ra-

machandran. Cache-Oblivious algorithms. In Pro-

ceedings of the Annual symposium on Foundations

of Computer Science, pages 285–298. IEEE Com-

puter Society, 1999.

[29] M. Frigo, C. E. Leiserson, and K. H. Randall. The

implementation of the Cilk-5 multithreaded lan-

guage. In Proceedings of the conference on Pro-

gramming Language Design and Implementation,

pages 212–223. ACM, 1998.

[30] R. G. Gallager, P. A. Humblet, and P. M. Spira.

A distributed algorithm for minimum-weight span-

ning trees. ACM Transactions on Programming

Languages and Systems, 5(1):66–77, 1983.

[31] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson,

and C. Guestrin. Powergraph: distributed graph-

parallel computation on natural graphs. In Pro-

ceedings of the conference on Operating Sys-

tems Design and Implementation, pages 17–30.

USENIX Association, 2012.

[32] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim,

J. Kim, and H. Yu. Turbograph: a fast parallel

graph engine handling billion-scale graphs in a sin-

gle PC. In Proceedings of the International con-

ference on Knowledge discovery and data mining,

pages 77–85. ACM, 2013.

[33] S. Hong, T. Oguntebi, and K. Olukotun. Efficient

parallel graph exploration on multi-core CPU and

GPU. In Proceedings of the International con-

ference on Parallel Architectures and Compilation

Techniques, pages 78–88. IEEE Computer Society,

2011.

[34] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and

R. Pletka. Write amplification analysis in flash-

based solid state drives. In Proceedings of the

Israeli Experimental Systems Conference, pages

10:1–10:9. ACM, 2009.

[35] U. Kang, D. Chau, and C. Faloutsos. Inference

of beliefs on billion-scale graphs. Workshop on

Large-scale Data Mining: Theory and Applica-

tions, 2010.

[36] H. Kwak, C. Lee, H. Park, and S. Moon. What is

Twitter, a social network or a news media? In Pro-

ceedings of the International conference on World

Wide Web, pages 591–600. ACM, 2010.

[37] A. Kyrola and G. Blelloch. Graphchi: Large-scale

graph computation on just a PC. In Proceedings of

the conference on Operating Systems Design and

Implementation. USENIX Association, 2012.

[38] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph

evolution: Densification and shrinking diameters.

ACM Transactions on Knowledge Discovery from

Data, 1(1), 2007.

[39] A. Lumsdaine, D. Gregor, B. Hendrickson, and

J. Berry. Challenges in parallel graph processing.

Parallel Processing Letters, 17(1):5–20, 2007.

[40] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehn-

ert, I. Horn, N. Leiser, and G. Czajkowski. Pregel:

a system for large-scale graph processing. In Pro-

ceedings of the International Conference on Man-

agement of Data, pages 135–146. ACM, 2010.

[41] S. Muthukrishnan. Data streams: algorithms and

applications. In Proceedings of the Symposium on

Discrete Algorithms, pages 413–. SIAM, 2003.

[42] L. Page, S. Brin, R. Motwani, and T. Winograd.

The PageRank citation ranking: Bringing order to

the web. Technical report, Stanford University,

1998.

[43] R. Pearce, M. Gokhale, and N. M. Amato. Mul-

tithreaded asynchronous graph traversal for in-

memory and semi-external memory. In Proceed-

ings of the International conference for High Per-

formance Computing, Networking, Storage and

Analysis, pages 1–11. IEEE Computer Society,

2010.

[44] V. Prabhakaran, M. Wu, X. Weng, F. McSherry,

L. Zhou, and M. Haridasan. Managing large graphs

on multi-cores with graph awareness. In Proceed-

ings of the Annual Technical Conference, pages 4–.

USENIX Association, 2012.

[45] C. Ranger, R. Raghuraman, A. Penmetsa, G. Brad-

ski, and C. Kozyrakis. Evaluating MapReduce for

multi-core and multiprocessor systems. In Pro-

ceedings of the International symposium on High

Performance Computer Architecture, pages 13–24.

IEEE Computer Society, 2007.

[46] M. Rosenblum and J. K. Ousterhout. The design

and implementation of a log-structured file sys-

tem. ACM Transactions on Computer Systems,

10(1):26–52, 1992.

[47] S. Salihoglu and J. Widom. Computing strongly

connected components in Pregel-like systems.

Technical report, Stanford University.

[48] J. Shun and G. E. Blelloch. Ligra: a lightweight

graph processing framework for shared memory. In

Proceedings of the Symposium on Principles and

Practice of Parallel Programming, pages 135–146.

ACM, 2013.

[49] D. N. Simha, M. Lu, and T.-c. Chiueh. An update-

aware storage system for low-locality update-

intensive workloads. In Proceedings of the Inter-

national conference on Architectural Support for

Programming Languages and Operating Systems,

pages 375–386. ACM, 2012.

[50] A. Twigg, A. Byde, G. Milos, T. Moreton,

J. Wilkes, and T. Wilkie. Stratified B-trees and

versioned dictionaries. In Proceedings of the Con-

ference on Hot topics in Storage and File Systems,

pages 10–. USENIX Association, 2011.

[51] J. S. Vitter. Algorithms and Data Structures for

External Memory. Now Publishers Inc., 2008.

[52] D. Woodhouse. JFFS : the Journalling Flash File

System. Ottawa Linux Symposium, 2001.

[53] E. Yoneki and A. Roy. Scale-up graph processing:

a storage-centric view. In International workshop

on Graph Data Management Experiences and Sys-

tems, pages 8:1–8:6. ACM, 2013.

[54] A. Yoo, E. Chow, K. Henderson, W. McLendon,

B. Hendrickson, and U. Catalyurek. A scalable dis-

tributed parallel breadth-first search algorithm on

bluegene/l. In Proceedings of the 2005 ACM/IEEE

conference on Supercomputing, pages 25–. IEEE

Computer Society, 2005.

[55] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.

Large-scale parallel collaborative filtering for the

netflix prize. In Proceedings of the International

conference on Algorithmic Aspects in Informa-

tion and Management, pages 337–348. Springer-

Verlag, 2008.

