28 research outputs found

    Reduction of respiratory blurring in small-animal CT scans based on a fast retrospective gating method

    Get PDF
    [Abstract] The 22nd International Congress and Exhibition, Barcelona, Spain, June 25-28, 2008The purpose of the present work was to develop a fast retrospective method to extract the respiratory signal from the CT projections in cone beam geometry and to obtain dynamic breathing studies in small animal scans. The whole process had to be software-based and automatic, avoiding the use of any additional respiratory gating instrumentsPublicad

    Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions

    Get PDF
    Purpose: The proliferation of cone-beam CT (CBCT) has created interest in performance optimization,with x-ray scatter identifie among the main limitations to image quality. CBCT often contends with elevated scatter, but the wide variety of imaging geometry in different CBCT configuration suggests that not all configuration are affected to the same extent. Graphics processing unit (GPU) accelerated Monte Carlo (MC) simulations are employed over a range of imaging geometries to elucidate the factors governing scatter characteristics, effica y of antiscatter grids, guide system design, and augment development of scatter correction. Methods: A MC x-ray simulator implemented on GPU was accelerated by inclusion of variance reduction techniques (interaction splitting, forced scattering, and forced detection) and extended to include x-ray spectra and analytical models of antiscatter grids and flat-pane detectors. The simulator was applied to small animal (SA), musculoskeletal (MSK) extremity, otolaryngology (Head), breast, interventional C-arm, and on-board (kilovoltage) linear accelerator (Linac) imaging, with an axis-todetector distance (ADD) of 5, 12, 22, 32, 60, and 50 cm, respectively. Each configuratio was modeled with and without an antiscatter grid and with (i) an elliptical cylinder varying 70–280 mm in major axis; and (ii) digital murine and anthropomorphic models. The effects of scatter were evaluated in terms of the angular distribution of scatter incident upon the detector, scatter-to-primary ratio (SPR), artifact magnitude, contrast, contrast-to-noise ratio (CNR), and visual assessment. Results: Variance reduction yielded improvements in MC simulation efficien y ranging from ∼17-fold (for SA CBCT) to ∼35-fold (for Head and C-arm), with the most significan acceleration due to interaction splitting (∼6 to ∼10-fold increase in efficien y). The benefi of a more extended geometry was evident by virtue of a larger air gap—e.g., for a 16 cm diameter object, the SPR reduced from 1.5 for ADD = 12 cm (MSK geometry) to 1.1 for ADD = 22 cm (Head) and to 0.5 for ADD = 60 cm (C-arm). Grid efficien y was higher for configuration with shorter air gap due to a broader angular distribution of scattered photons—e.g., scatter rejection factor ∼0.8 for MSK geometry versus ∼0.65 for C-arm. Grids reduced cupping for all configuration but had limited improvement on scatterinduced streaks and resulted in a loss of CNR for the SA, Breast, and C-arm. Relative contribution of forward-directed scatter increased with a grid (e.g., Rayleigh scatter fraction increasing from ∼0.15 without a grid to ∼0.25 with a grid for the MSK configuration) resulting in scatter distributions with greater spatial variation (the form of which depended on grid orientation). Conclusions: A fast MC simulator combining GPU acceleration with variance reduction provided a systematic examination of a range of CBCT configuration in relation to scatter, highlighting the magnitude and spatial uniformity of individual scatter components, illustrating tradeoffs in CNR and artifacts and identifying the system geometries for which grids are more beneficia (e.g., MSK) from those in which an extended geometry is the better defense (e.g., C-arm head imaging). Compact geometries with an antiscatter grid challenge assumptions of slowly varying scatter distributions due to increased contribution of Rayleigh scatter.The research was supported by academic-industry partnership with Carestream Health Inc. (Rochester, NY) and National Institutes of Health (NIH) Grant No. 2R01-CA-112163. A. Sisniega is supported by FPU grant (Spanish Ministry of Education), AMIT project, RECAVA-RETIC Network, Project Nos. TEC2010-21619- C04-01, TEC2011-28972-C02-01, and PI11/00616 (Spanish Ministry of Science and Education), ARTEMIS program (Comunidad de Madrid), and PreDiCT-TB partnership.Publicad

    Assessment of a New High-Performance Small-Animal X-Ray Tomograph

    No full text

    Bismuth labeling for the CT assessment of local administration of magnetic nanoparticles

    No full text
    Many therapeutic applications of magnetic nanoparticles involve the local administration of nanometric iron oxide based materials as seeds for magnetothermia or drug carriers. A simple and widespread way of controlling the process using x-ray computed tomography (CT) scanners is desirable. The combination of iron and bismuth in one entity will increase the atenuation of xrays, offering such a possibility. In order to check this possibility core-shell nanocrystals of iron oxide@bismuth oxide have been synthesized by an aqueous route and stabilized in water by polyethylene glycol (PEG), and we have evaluated their ability to generate contrast by CT and magnetic resonance imaging (MRI) to measure the radiopacity and proton relaxivities using phantoms. High-resolution scanning transmission electron microscopy (STEM) revealed that the material consists of a highly crystalline 8 nm core of maghemite and a 1 nm shell of bismuth atoms either isolated or clustered on the nanocrystal's surface. The comparison of μCT and MRI images of mice acquired in the presence of the contrast shows that when local accumulations of the magnetic nanoparticles take place, CT images are more superior in the localization of the magnetic nanoparticles than MRI images, which results in magnetic field inhomogeneity artifacts.This work was supported by the Spanish Ministry of Economy and Competitiveness through Project MAT2011-23641. The authors acknowledge the help of Dr Ruiz Cabello and Dr Herranz in the relaxometric measurements at the Centro Nacional de Investigaciones Cardiovasculares CNIC and acknowledge Guerbet Group for the economic support and the supply of Xenetix®. The research at ORNL US, the Department of Energy (DOE), Basic Energy Sciences (BES), the Materials Sciences and Energy Division (MV) and the Complutense University of Madrid (UCM) was supported by the ERC Starting Investigator Award STEMOX 739239

    Bismuth labeling for the CT assessment of local administration of magnetic nanoparticles

    No full text
    Many therapeutic applications of magnetic nanoparticles involve the local administration of nanometric iron oxide based materials as seeds for magnetothermia or drug carriers. A simple and widespread way of controlling the process using x-ray computed tomography (CT) scanners is desirable. The combination of iron and bismuth in one entity will increase the atenuation of x-rays, offering such a possibility. In order to check this possibility core-shell nanocrystals of iron oxide@bismuth oxide have been synthesized by an aqueous route and stabilized in water by polyethylene glycol (PEG), and we have evaluated their ability to generate contrast by CT and magnetic resonance imaging (MRI) to measure the radiopacity and proton relaxivities using phantoms. High-resolution scanning transmission electron microscopy (STEM) revealed that the material consists of a highly crystalline 8 nm core of maghemite and a 1 nm shell of bismuth atoms either isolated or clustered on the nanocrystal's surface. The comparison of μCT and MRI images of mice acquired in the presence of the contrast shows that when local accumulations of the magnetic nanoparticles take place, CT images are more superior in the localization of the magnetic nanoparticles than MRI images, which results in magnetic field inhomogeneity artifacts
    corecore