252 research outputs found

    Excited states of beryllium atom from explicitly correlated wave functions

    Full text link
    A study of the first excited states of beryllium atom starting from explicitly correlated wave functions is carried out. Several properties are obtained and discussed focusing on the analysis of the Hund's rules in terms of the single--particle and electron pair intracule and extracule densities. A systematic study of the differences on the electronic distributions of the singlet and triplet states is carried out. The trial wave function used to describe the different bound states consists of a generalized Jastrow-type correlation factor times a configuration interaction model wave function. This model wave function has been fixed by using a generalization of the optimized effective potential method to deal with multiconfiguration wave functions. The optimization of the wave function and the calculation of the different quantities is carried out by means of the Variational Monte Carlo method.Comment: 28 pages, 6 figure

    Quadratic diffusion Monte Carlo and pure estimators for atoms

    Full text link
    The implementation and reliability of a quadratic diffusion Monte Carlo method for the study of ground-state properties of atoms are discussed. We show in the simple yet non-trivial calculation of the binding energy of the Li atom that the method presented is effectively second-order in the time step. The fulfilment of the expected quadratic behavior relies on some basic requirements of the trial wave function used for importance sampling, in the context of the fixed-node approximation. Expectation values of radial operators are calculated by means of a pure estimation based on the forward walking methodology. It is shown that accurate results without extrapolation errors can be obtained with a pure algorithm that can be easily implemented in any previous diffusion Monte Carlo program.Comment: RevTex, 20 pages, 3 figures, accepted in J. Chem. Phy

    Density functional study of two-dimensional He-4 clusters

    Get PDF
    Binding energies and density profiles of two-dimensional systems of liquid He-4 with different geometries are studied by means of a zero-range density functional adjusted to reproduce the line tension obtained in a previous diffusion Monte Carlo calculation (lambda_{DMC}=0.121 K/A). It is shown that this density functional provides accurate results for the binding energy of large clusters with a reasonable computational effort.Comment: RevTeX4, 11 pages + 2 tables + 6 figure

    Quantum defect asymptotics at the critical charge: A study of the integrality conjecture

    Get PDF
    A single (n, ℓ) electron outside an (N −1)-electron atomic core is bound as long as Z > Zc = N − 1. A conjecture is examined, according to which the quantum defect of the outermost electron satisfies limZ!Zc δn,ℓ(Z) = Nℓ, where Nℓ is the number of occupied or partially occupied orbitals with angular momentum quantum number ℓ within the (N − 1)-electron core. Specifically, the 3s quantum defect is inspected for the different occupancies of the n = 1 and n = 2 shells. The conjecture is found to hold in all the cases considered

    Parameterized optimized effective potential for the ground state of the atoms He through Xe

    Full text link
    Parameterized orbitals expressed in Slater-type basis obtained within the optimized effective potential framework as well as the parameterization of the potential are reported for the ground state of the atoms He through Xe. The total, kinetic, exchange and single particle energies are given for each atom.Comment: 47 pages, 1 figur

    Status and preliminary results of the ANAIS experiment at Canfranc

    Get PDF
    ANAIS (Annual Modulation with NaI's) is an experiment planned to investigate seasonal modulation effects in the signal of galactic WIMPs using up to 107 kg of NaI(Tl) in the Canfranc Underground Laboratory (Spain). A prototype using one single crystal (10.7 kg) is being developed before the installation of the complete experiment; the first results presented here show an average background level of 1.2 counts/(keV kg day) from threshold (Ethr~4 keV) up to 10 keV.Comment: 3 pages, 2 figures, talk delivered at the 7th International Workshop on Topics in Astroparticle and Underground Physics (TAUP 2001), September 2001, Laboratori Nazionali del Gran Sasso, Italy (to appear in the Conference Proceedings, Nucl. Phys. B (Proc. Suppl.)

    Sensitivity plots for WIMP direct detection using the annual modulation signature

    Get PDF
    Annual modulation due to the Earth's motion around the Sun is a well known signature of the expected WIMP signal induced in a solid state underground detector. In the present letter we discuss the prospects of this technique on statistical grounds, introducing annual-modulation sensitivity plots for the WIMP-nucleon scalar cross section for different materials and experimental conditions. The highest sensitivity to modulation is found in the WIMP mass interval 10 GeV< m_W < 130 GeV, the actual upper limit depending from the choice of the astrophysical parameters, while the lowest values of the explorable WIMP-nucleon elastic cross-sections fall in most cases within one order of magnitude of the sensitivities of present direct detection WIMP searches.Comment: 24 pages, ReVTeX, 9 figures, submitted to Astroparticle Physic
    corecore