203 research outputs found

    The Diversity Dividend: does a more diverse and inclusive research community produce better biomedical and health research?

    Get PDF
    Over the past decade, the need for greater diversity and inclusion across research systems has received greater emphasis from policymakers, funders, universities and stakeholders. Strategies in support of diversity and inclusion need to be underpinned by the best available evidence. This short briefing paper is a summary of a larger review carried out by a multidisciplinary team from University of Sheffield of the relationship between a diverse and inclusive biomedical and health research community, and the qualities and impacts of its research

    Genome editing: the dynamics of continuity, convergence and change in the engineering of life

    Get PDF
    Genome editing enables very accurate alterations to DNA. It promises profound and potentially disruptive changes in healthcare, agriculture, industry and the environment. This paper presents a multidisciplinary analysis of the contemporary development of genome editing and the tension between continuity and change. It draws on the idea that actors involved in innovation are guided by “sociotechnical regimes” composed of practices, institutions, norms and cultural beliefs. Analysis focuses on how genome editing is emerging in different domains and whether this marks continuity or disruption of the established biotechnology regime. In conclusion, it will be argued that genome editing is best understood as a technology platform that is being powerfully shaped by this existing regime but is starting to disrupt the governance of biotechnology. In the longer term is it set to converge with other powerful technology platforms, which together will fundamentally transform the capacity to engineer life

    The social triad model: considering the deployer in a novel approach to trust in human–robot interaction

    Get PDF
    There is an increasing interest in considering, measuring, and implementing trust in human-robot interaction (HRI). New avenues in this field include identifying social means for robots to influence trust, and identifying social aspects of trust such as a perceptions of robots’ integrity, sincerity or even benevolence. However, questions remain regarding robots’ authenticity in obtaining trust through social means and their capacity to increase such experiences through social interaction with users. We propose that the dyadic model of HRI misses a key complexity: a robot’s trustworthiness may be contingent on the user’s relationship with, and opinion of, the individual or organisation deploying the robot (termed here, Deployer). We present a case study in three parts on researching HRI and a LEGO® Serious® Play focus group on care robotics to indicate how Users’ trust towards the Deployer can affect trust towards robots and robotic research. Our Social Triad model (User, Robot, Deployer) offers novel avenues for exploring trust in a social context

    Using LEGO® SERIOUS® Play with stakeholders for RRI

    Get PDF
    This paper discusses Responsible (Research and) Innovation (RRI) within a UKRI project funded through the Trustworthy Autonomous Systems Hub, Imagining Robotic Care: Identifying conflict and confluence in stakeholder imaginaries of autonomous care systems. We used LEGO® Serious Play® as an RRI methodology for focus group workshops exploring sociotechnical imaginaries about how robots should (or should not) be incorporated into the existing UK health-social care system held by care system stakeholders, users and general publics. We outline the workshops’ protocol and some emerging insights from early data collection, including the ways that LSP aids in the surfacing of tacit knowledge, allowing participants to develop their own scenarios and definitions of ‘robot’ and ‘care’. We further discuss the implications of LSP as a method for upstream stakeholder engagement in general and how this may contribute to embedding RRI in robotics research on a larger scale

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation

    Get PDF
    WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m−2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    CRISPR in context : towards a socially responsible debate on embryo editing

    Get PDF
    Following the birth in 2018 of two babies from embryos altered using CRISPR-Cas9, human germline gene editing (GGE) moved from abstract concern to reality. He Jiankui, the scientist responsible, has been roundly condemned by most scientific, legal and ethical commentators. However, opinions remain divided on whether GGE could be acceptably used in the future, and how, or if it should be prohibited entirely. The many reviews, summits, positions statements and high-level meetings that have accompanied the emergence of CRISPR technology acknowledge this, calling for greater public engagement to help reach a consensus on how to proceed. These calls are laudable but far from unproblematic. Consensus is not only hugely challenging to reach, but difficult to measure and to know when it might be achieved. Engagement is clearly desirable, but engagement strategies need to avoid the limitations of previous encounters between publics and biotechnology. Here we set CRISPR in the context of the biotechnology and fertility industries to illustrate the lessons to be learned. In particular we demonstrate the importance of avoiding a ‘deficit mode’ in which resistance is attributed to a lack of public understanding of science, addressing the separation of technical safety criteria from ethical and social matters, and ensuring the scope of the debate includes the political-economic context in which science is conducted and new products and services are brought to market. Through this history, we draw on Mary Douglas’ classic anthropological notion of ‘matter out of place’ to explain why biotechnologies evoke feelings of unease and anxiety, and recommend this as a model for rehabilitating lay apprehension about novel biological technologies as legitimate matters of concern in future engagement exercises about GGE
    corecore