637 research outputs found

    Character of jet flows in mass-spectrometric interfaces at various pressures and chamber lengths

    Get PDF
    Samples-in particular, of bioorganic matter—are usually introduced into a mass spectrometer from atmosphere to high vacuum via a gasdynamic interface that represents a chamber with intermediate pressure or a system of chambers with gradually decreasing pressure. Transformation of the character of an expanding jet flow in a single-chamber interface has been studied as dependent on the chamber length and pressure. Knowledge of this character allows the system parameters to be most effectively used so as to ensure high ion transmission and decrease mass discriminatio

    Electromechanical Imaging of Biological Systems with Sub-10 nm Resolution

    Get PDF
    Electromechanical imaging of tooth dentin and enamel has been performed with sub-10 nm resolution using piezoresponse force microscopy. Characteristic piezoelectric domain size and local protein fiber ordering in dentin have been determined. The shape of a single collagen fibril in enamel is visualized in real space and local hysteresis loops are measured. Because of the ubiquitous presence of piezoelectricity in biological systems, this approach is expected to find broad application in high-resolution studies of a wide range of biomaterials.Comment: 12 pages, 4 figures, submitted for publication in Appl. Phys. Let

    Peculiarities of strained state of the buggy undercarriage under torsional loading

    Full text link
    This paper deals with the traits of strained state of buggy undercarriage torsional loading. The buggy undercarriage represents a tubular space frame consisting of round cross-section elements. The strained state of the buggy space frame can be characterized by a number of specific features such as: a centerline distortion and front sub-frame cross-sections twisting about their own pivot points. The possible reasons for it are considered as well as their negative effects. Practical recommendations to minimize the negative effects are proposed. All the represented results are obtained with the help of a computer simulation technique based on the finite element method. © 2019 Published under licence by IOP Publishing Ltd

    Discontinuous Bifurcations under 2-DOF Vibroimpact System Moving

    Get PDF
    Dynamic behaviour of strongly nonlinear non-smooth discontinuous vibroimpact system isstudied. Under variation of system parameters we find the disconti nuousbi furcati onsthat are the dangerousones. It is phenomenon unique to non-smooth systems with discontinuous right-hand side. We investigate the 2-DOF vibroimpact system by numerical parameter continuation method in conjunction with shooting and Newton-Raphson methods, Wife simulate the impact by nonlinear contact interactive force according to Hertz's contact law. We find the discontinuous bifurcations by Floquet multipliers values. At such points set-valued Floquet multipliers cross the unit circle by jump that istheir moduli becoming more than unit by jump. Wealso learn the bifurcation picture change when the impact between system bodi es became the soft one due the change of system parameters, This paper is the continuation of the previous works

    Mechanism of fragmentation and atomization of molecular ions in gasdynamic transport cell

    Get PDF
    The fragmentation of molecular ions formed upon the electrospraying of a sample and transported through the gasdynamic system of a mass spectrometer equipped with an IESAP (Ion Extraction from Solution at Atmospheric Pressure) source has been experimentally studied. It is established that ion fragmentation in a Kantorowicz-Gray type cell takes place in the immediate vicinity of a skimmer port, apparently, as a result of collisions between ions (accelerated in an electric field) and stagnant gas. Molecular mechanisms of fragmentation are considered and it is concluded that this process can take place in a single ion-molecule collision even

    Optical vortex generation from molecular chromophore arrays

    Get PDF
    The generation of light endowed with orbital angular momentum, frequently termed optical vortex light, is commonly achieved by passing a conventional beam through suitably constructed optical elements. This Letter shows that the necessary phase structure for vortex propagation can be directly produced through the creation of twisted light from the vacuum. The mechanism is based on optical emission from a family of chromophore nanoarrays that satisfy specific geometric and symmetry constraints. Each such array can support pairs of electronically delocalized doubly degenerate excitons whose azimuthal phase progression is responsible for the helical wave front of the emitted radiation. The exciton symmetry dictates the maximum magnitude of topological charge; detailed analysis secures the conditions necessary to deliver optical vortices of arbitrary order

    Infrared studies of a La_(0.67)Ca_(0.33)MnO_3 single crystal: Optical magnetoconductivity in a half-metallic ferromagnet

    Get PDF
    The infrared reflectivity of a La_(0.67)Ca_(0.33)MnO_3 single crystal is studied over a broad range of temperatures (78–340 K), magnetic fields (0–16 T), and wave numbers (20–9000cm^(-1)). The optical conductivity gradually changes from a Drude-like behavior to a broad peak feature near 5000cm-1 in the ferromagnetic state below the Curie temperature T_C=307K. Various features of the optical conductivity bear striking resemblance to recent theoretical predictions based on the interplay between the double exchange interaction and the Jahn-Teller electron-phonon coupling. A large optical magnetoconductivity is observed near T_C

    Infrared Studies of a La_{0.67}Ca_{0.33}MnO_3 Single Crystal: Optical Magnetoconductivity in a Half-Metallic Ferromagnet

    Get PDF
    The infrared reflectivity of a La0.67Ca0.33MnO3\rm La_{0.67}Ca_{0.33}MnO_3 single crystal is studied over a broad range of temperatures (78-340 K), magnetic fields (0-16 T), and wavenumbers (20-9000 cm1^{-1}). The optical conductivity gradually changes from a Drude-like behavior to a broad peak feature near 5000 cm1^{-1} in the ferromagnetic state below the Curie temperature TC=307KT_C=307 K. Various features of the optical conductivity bear striking resemblance to recent theoretical predictions based on the interplay between the double exchange interaction and the Jahn-Teller electron-phonon coupling. A large optical magnetoconductivity is observed near TCT_C.Comment: 4 pages, 4 figures, Latex, PostScript; The 7th Joint MMM-Intermag Conference,San Francisco, January 6-9, 1998; The Int. Conf. on Strongly Correlated Electron Systems, Paris, July 15-18,199

    INFLUENCE OF HELIOGEOPHYSICAL FACTORS ON HUMAN HEALTH

    Get PDF
    The purpose of this work is the development of the connection between a level of geomagnetic activity and a quantity of emergency calls for cardiovascular diseases. To perform the study we analyzed data on the quantity of emergency calls in Irkutsk during 8years period (2001-2004, 2007-2010). In total we analyzed 1460 days, 8942 cases of acute myocardial infarction and 1953 cases of intra-cerebral hemorrhage. There is a significant positive correlation between the number of ambulance calls for acute vascular pathology (myocardial infarction, intracerebral hemorrhage) and the Kp index over all years of study
    corecore