192 research outputs found

    Logiciel de génération et représentation de structures cristallines

    Full text link

    Integral Neutron Multiplicity Measurements from Cosmic Ray Interactions in Lead

    Full text link
    Sixty element 3He neutron multiplicity detector systems were designed, constructed and tested for use in cosmic ray experiments with a 30-cm cube lead target. A series of measurements were performed for the cosmic ray configuration at ground level (3 meters water equivalent, mwe), in the St. Petersburg metro tunnel (185 mwe), and in the Pyhäsalmi mine in Finland (583 and 1185 mwe). Anomalous coincidence events with charged cosmic ray particles at sea level produced events with 100-120 neutrons due possibly to the total disintegration of the Pb nucleus. These events were also detected at 185 mwe, but the particles causing such disintegration are currently unidentified. We present examples of preliminary data from the various measurements and discuss future plans for underground experiments including possible searches for Weakly Interacting Massive Particles (WIMP, dark matter)

    Ma vie musicale

    Get PDF
    n/

    Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals.

    Get PDF
    BackgroundThe SCID-hu Thy/Liv mouse model of HIV-1 infection is a useful platform for the preclinical evaluation of antiviral efficacy in vivo. We performed this study to validate the model with representatives of all four classes of licensed antiretrovirals.Methodology/principal findingsEndpoint analyses for quantification of Thy/Liv implant viral load included ELISA for cell-associated p24, branched DNA assay for HIV-1 RNA, and detection of infected thymocytes by intracellular staining for Gag-p24. Antiviral protection from HIV-1-mediated thymocyte depletion was assessed by multicolor flow cytometric analysis of thymocyte subpopulations based on surface expression of CD3, CD4, and CD8. These mice can be productively infected with molecular clones of HIV-1 (e.g., the X4 clone NL4-3) as well as with primary R5 and R5X4 isolates. To determine whether results in this model are concordant with those found in humans, we performed direct comparisons of two drugs in the same class, each of which has known potency and dosing levels in humans. Here we show that second-generation antiretrovirals were, as expected, more potent than their first-generation predecessors: emtricitabine was more potent than lamivudine, efavirenz was more potent than nevirapine, and atazanavir was more potent than indinavir. After interspecies pharmacodynamic scaling, the dose ranges found to inhibit viral replication in the SCID-hu Thy/Liv mouse were similar to those used in humans. Moreover, HIV-1 replication in these mice was genetically stable; treatment of the mice with lamivudine did not result in the M184V substitution in reverse transcriptase, and the multidrug-resistant NY index case HIV-1 retained its drug-resistance substitutions.ConclusionGiven the fidelity of such comparisons, we conclude that this highly reproducible mouse model is likely to predict clinical antiviral efficacy in humans

    Grifonin-1: A Small HIV-1 Entry Inhibitor Derived from the Algal Lectin, Griffithsin

    Get PDF
    Background: Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin's sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties. Methodology/Results: The new peptides derived from a trio of homologous β-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular β-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface. Conclusion: Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1

    HIV-1 Entry, Inhibitors, and Resistance

    Get PDF
    Entry inhibitors represent a new class of antiretroviral agents for the treatment of infection with HIV-1. While resistance to other HIV drug classes has been well described, resistance to this new class is still ill defined despite considerable clinical use. Several potential mechanisms have been proposed: tropism switching (utilization of CXCR4 instead of CCR5 for entry), increased affinity for the coreceptor, increased rate of virus entry into host cells, and utilization of inhibitor-bound receptor for entry. In this review we will address the development of attachment, fusion, and coreceptor entry inhibitors and explore recent studies describing potential mechanisms of resistance

    Explaining varieties of corruption in the Afghan justice sector

    Get PDF
    © 2015 Taylor & Francis. Judicial reform in Afghanistan is seriously undermined by systemic corruption that has resulted in low legitimacy of the state and weak rule of law. This article reviews the main shortcomings in the Afghan justice system with reference to 70 interviews conducted in Kabul. Building on legal pluralism and a political economic approach, the shortcomings and causes and consequences of corruption in the Afghan justice sector are highlighted. These range from low pay, resulting in bribery; criminal and political intrusion into the judiciary; non-adherence to meritocracy, with poorly educated judges and prosecutors; and low funding in the judicial sector resulting in weak case tracking and human rights abuses in the countryside. This is followed by sociological approaches: understanding corruption from a non-Western approach and emphasis on religion, morality and ethics in order to curb it

    H-NS plays a role in expression of Acinetobacter baumannii virulence features

    Get PDF
    Acinetobacter baumannii has become a major problem in the clinical setting with the prevalence of infections caused by multidrug-resistant strains on the increase. Nevertheless, only a limited number of molecular mechanisms involved in the success of A. baumannii as a human pathogen have been described. In this study, we examined the virulence features of a hypermotile derivative of A. baumannii strain ATCC 17978, which was found to display enhanced adherence to human pneumocytes and elevated levels of lethality toward Caenorhabditis elegans nematodes. Analysis of cellular lipids revealed modifications to the fatty acid composition, providing a possible explanation for the observed changes in hydrophobicity and subsequent alteration in adherence and motility. Comparison of the genome sequences of the hypermotile variant and parental strain revealed that an insertion sequence had disrupted an hns-like gene in the variant. This gene encodes a homologue of the histone-like nucleoid structuring (H-NS) protein, a known global transcriptional repressor. Transcriptome analysis identified the global effects of this mutation on gene expression, with major changes seen in the autotransporter Ata, a type VI secretion system, and a type I pilus cluster. Interestingly, isolation and analysis of a second independent hypermotile ATCC 17978 variant revealed a mutation to a residue within the DNA binding region of H-NS. Taken together, these mutants indicate that the phenotypic and transcriptomic differences seen are due to loss of regulatory control effected by H-NS.This work was supported by project grant 535053 to M.H.B. and I.T.P. from the National Health and Medical Research Council, Australia. B.A.E. is the recipient of a School of Biological Sciences Endeavor International Postgraduate Research Scholarship, and K.A.H. is supported by an APD fellowship from the Australian Research Council (DP110102680)

    Differential Regulation of Horizontally Acquired and Core Genome Genes by the Bacterial Modulator H-NS

    Get PDF
    Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization
    • …
    corecore