187 research outputs found

    Wind direction azimuthal signature in the stokes emission vector from the ocean surface at microwave frequencies

    Get PDF
    Includes bibliographical references (page 431).An ocean polarimetric emission model is presented. It is found that skewness and upwind/cross-wind rms slopes are responsible for the first and second azimuthal harmonic, respectively. Atmospheric effects contribute significantly at low wind speeds, and at horizontal polarization at certain observation angles. Simulation results compare favorably with reported JPL-WINDRAD measurements

    A comprehensive approach to dropout prevention programs

    Get PDF
    Educators have begun to focus on the third wave of reform, the prevention of dropouts (Hill, 1987). The first two waves of reform which took place during the 1970 1s and 1980\u27s focused heavily on how to improve teaching--which ultimately led to higher standards in academic performance. These standards, along with a variety of other factors, have increased the population of potential dropouts. Beck and Muia (1985) agree that the first two reforms had the unintended result of leaving further behind the students most in need of help in meeting higher standards. Therefore, the third reform taking place in the 90 1s is concentrating on what schools can do to prevent these students from dropping out of school and subsequently, failing to become productive members of society

    Evidence for continuing current in sprite-producing cloud-to-ground lightning

    Get PDF
    Includes bibliographical references (page 3642).Radio atmospherics launched by sprite producing positive cloud-to-ground lightning flashes and observed at Palmer Station, Antarctica, exhibit large ELF slow tails following the initial VLF portion, indicating the presence of continuing currents in the source lightning flashes. One-to-one correlation of sferics with NLDN lightning data in both time and arrival azimuth, measured with an accuracy of ±1° at ~12,000 km range, allows unambiguous identification of lightning flashes originating in the storm of interest. Slow-tail measurements at Palmer can potentially be used to measure continuing currents in lightning flashes over nearly half of the Earth's surface

    Observations of the relationship between sprite morphology and in-cloud lightning processes

    Get PDF
    [1] During a thunderstorm on 23 July 2003, 15 sprites were captured by a LLTV camera mounted at the observatory on Pic du Midi in the French Pyrénées. Simultaneous observations of cloud-to-ground (CG) and intracloud (IC) lightning activity from two independent lightning detection systems and a broadband ELF/VLF receiver allow a detailed study of the relationship between electrical activity in a thunderstorm and the sprites generated in the mesosphere above. Results suggest that positive CG and IC lightning differ for the two types of sprites most frequently observed, the carrot- and column-shaped sprites. Column sprites occur after a short delay (<30 ms) from the causative +CG and are associated with little VHF activity, suggesting no direct IC action on the charge transfer process. On the other hand, carrot sprites are delayed up to about 200 ms relative to their causative +CG stroke and are accompanied by a burst of VHF activity starting 25–75 ms before the CG stroke. While column sprites associate with short-lasting (less than 30 ms) ELF/VLF sferics, carrot sprites associate with bursts of sferics initiating at the time of the causative +CG discharge and persisting for 50 to 250 ms, indicating extensive in-cloud activity. One carrot event was found to be preceded by vigorous IC activity and a strong, long-lived cluster of ELF/VLF sferics but lacking a +CG. The observations of ELF/VLF sferic clusters associated with lightning and sprites form the basis for a discussion of the reliability of lightning detection systems based on VHF interferometry.Peer ReviewedPostprint (published version

    2008), Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort

    Get PDF
    [1] On the basis of Colorado State University (CSU) Na lidar observations over full diurnal cycles from May 2002 to April 2006, a harmonic analysis was performed to extract semidiurnal perturbations in mesopause region temperature and zonal and meridional winds over Fort Collins, Colorado (40.6°N, 105.1°W). The observed monthly results are in good agreement with MF radar tidal climatology for Urbana, Illinois, and with predictions of the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), sampled at the CSU Na lidar coordinates. The observed semidiurnal tidal period perturbation within the mesopause region is found to be dominated by propagating modes in winter and equinoctial months with a combined vertical wavelength varying from 50 km to almost 90 km and by a mode with evanescent behavior and longer vertical wavelength (100-150 km) in summer months, most likely due to dominance of (2, 2) and (2, 3) tidal (Hough) modes. The observed semidiurnal tidal amplitude shows strong seasonal variation, with a large amplitude during the winter months, with a higher growth rate above $85-90 km, and minimal amplitudes during the summer months. Maximum tidal amplitudes over 50 m/s for wind and 12 K for temperature occur during fall equinox. A detailed comparison with HAMMONIA predictions shows excellent agreement in semidiurnal phases. HAMMONIA-predicted semidiurnal amplitudes generally agree well with observations; however, HOMMONIA underestimates temperature amplitudes in some of the nonsummer months as well as zonal wind and meridional wind amplitudes in April and September but overestimates them in February. To reveal the effects of the atmospheric background on vertical propagation of tidal modes and their relative importance in the composite semidiurnal tide during different seasons, we use the lidarobserved monthly mean temperature and zonal wind from the same data set as well as HAMMONIA output to calculate the vertical wave number seasonal variations of the major tidal modes of the migrating semidiurnal tide. This leads to a qualitative understanding of the lidar-observed and HAMMONIA-predicted seasonal variation of the semidiurnal tidal perturbation

    Analysis of Immune Checkpoint Drug Targets and Tumor Proteotypes in Non-Small Cell Lung Cancer

    Get PDF
    New therapeutics targeting immune checkpoint proteins have significantly advanced treatment of non-small cell lung cancer (NSCLC), but protein level quantitation of drug targets presents a critical problem. We used multiplexed, targeted mass spectrometry (MS) to quantify immunotherapy target proteins PD-1, PD-L1, PD-L2, IDO1, LAG3, TIM3, ICOSLG, VISTA, GITR, and CD40 in formalin-fixed, paraffin-embedded (FFPE) NSCLC specimens. Immunohistochemistry (IHC) and MS measurements for PD-L1 were weakly correlated, but IHC did not distinguish protein abundance differences detected by MS. PD-L2 abundance exceeded PD-L1 in over half the specimens and the drug target proteins all displayed different abundance patterns. mRNA correlated with protein abundance only for PD-1, PD-L1, and IDO1 and tumor mutation burden did not predict abundance of any protein targets. Global proteome analyses identified distinct proteotypes associated with high PD-L1-expressing and high IDO1-expressing NSCLC. MS quantification of multiple drug targets and tissue proteotypes can improve clinical evaluation of immunotherapies for NSCLC

    Radiometric measurements of the microwave emissivity of foam

    Get PDF
    Includes bibliographical references.Radiometric measurements of the microwave emissivity of foam were conducted during May 2000 at the Naval Research Laboratory's Chesapeake Bay Detachment using radiometers operating at 10.8 and 36.5 GHz. Horizontal and vertical polarization measurements were performed at 36.5 GHz; horizontal, vertical, +45°, ­45°, left-circular, and right-circular polarization measurements were obtained at 10.8 GHz. These measurements were carried out over a range of incidence angles from 30° to 60°. Surface foam was generated by blowing compressed air through a matrix of gas-permeable tubing supported by an aluminum frame and floats. Video micrographs of the foam were used to measure bubble size distribution and foam layer thickness. A video camera was boresighted with the radiometers to determine the beam-fill fraction of the foam generator. Results show emissivities that were greater than 0.9 and approximately constant in value over the range of incidence angles for vertically polarized radiation at both 10.8 and 36.5 GHz, while emissivities of horizontally polarized radiation showed a gradual decrease in value as incidence angle increased. Emissivities at +45°, ­45°, left-circular, and right-circular polarizations were all very nearly equal to each other and were in turn approximately equal to the average values of the horizontal and vertical emissivities in each case.This work was sponsored by the Department of the Navy, Office of Naval Research under Award N0014-00-1-280 to the University of Massachusetts, Award N00014-00-0152 to the University of Washington, and Award N0001400WX21032 to the Naval Research Laboratory

    Retrieval of atmospheric attenuation using combined ground-based and airborne 95-GHz cloud radar measurements

    Get PDF
    Includes bibliographical references (page 1353).Cloud measurements at millimeter-wave frequencies are affected by attenuation due to atmospheric gases, clouds, and precipitation. Estimation of the true equivalent radar reflectivity, Ze, is complicated because extinction mechanisms are not well characterized at these short wavelengths. This paper discusses cloud radar calibration and intercomparison of airborne and ground-based radar measurements and presents a unique algorithm for attenuation retrieval. This algorithm is based on dual 95-GHz radar measurements of the same cloud and precipitation volumes collected from opposing viewing angles. True radar reflectivity is retrieved by combining upward-looking and downward-looking radar profiles. This method reduces the uncertainty in radar reflectivity and attenuation estimates, since it does not require a priori knowledge of hydrometeors' microphysical properties. Results from this technique are compared with results retrieved from the Hitschfeld and Bordan algorithm, which uses single-radar measurements with path-integrated attenuation as a constraint. Further analysis is planned to employ this dual-radar algorithm in order to refine single-radar attenuation retrieval techniques, which will be used by operational sensors such as the CloudSat radar

    Sea surface emissivity observations at L-band: first results of the Wind and Salinity Experiment WISE 2000

    Get PDF
    Sea surface salinity can be measured by passive microwave remote sensing at L-band. In May 1999, the European Space Agency (ESA) selected the Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Opportunity Mission to provide global coverage of soil moisture and ocean salinity. To determine the effect of wind on the sea surface emissivity, ESA sponsored the Wind and Salinity Experiment (WISE 2000). This paper describes the field campaign, the measurements acquired with emphasis in the radiometric measurements at L-band, their comparison with numerical models, and the implications for the remote sensing of sea salinity.Peer ReviewedPostprint (published version
    corecore