2,010 research outputs found

    Intracluster Comptonization of the CMB: Mean Spectral Distrortion and Cluster Number Counts

    Get PDF
    The mean sky-averaged Comptonization parameter, y, describing the scattering of the CMB by hot gas in clusters of galaxies is calculated in an array of flat and open cosmological and dark matter models. The models are globally normalized to fit cluster X-ray data, and intracluster gas is assumed to have evolved in a manner consistent with current observations. We predict values of y lower than the COBE/FIRAS upper limit. The corresponding values of the overall optical thickness to Compton scattering are < 10^{-4} for relevant parameter values. Of more practical importance are number counts of clusters across which a net flux (with respect to the CMB) higher than some limiting value can be detected. Such number counts are specifically predicted for the COBRAS/SAMBA and BOOMERANG missions.Comment: 23 pages, Latex, 11 PostScript figures, 5 PostScript tables, to appear in Ap

    Characterization of the Fe metalloproteome of a ubiquitous marine heterotroph, Pseudoalteromonas (BB2-AT2): multiple bacterioferritin copies enable significant Fe storage

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mazzotta, M. G., McIlvin, M. R., & Saito, M. A. Characterization of the Fe metalloproteome of a ubiquitous marine heterotroph, Pseudoalteromonas (BB2-AT2): multiple bacterioferritin copies enable significant Fe storage. Metallomics, (2020), doi:10.1039/d0mt00034e.Fe is a critical nutrient to the marine biological pump, which is the process that exports photosynthetically fixed carbon in the upper ocean to the deep ocean. Fe limitation controls photosynthetic activity in major regions of the oceans, and the subsequent degradation of exported photosynthetic material is facilitated particularly by marine heterotrophic bacteria. Despite their importance in the carbon cycle and the scarcity of Fe in seawater, the Fe requirements, storage and cytosolic utilization of these marine heterotrophs has been less studied. Here, we characterized the Fe metallome of Pseudoalteromonas (BB2-AT2). We found that with two copies of bacterioferritin (Bfr), Pseudoalteromonas possesses substantial capacity for luxury uptake of Fe. Fe : C in the whole cell metallome was estimated (assuming C : P stoichiometry ∌51 : 1) to be between ∌83 ÎŒmol : mol Fe : C, ∌11 fold higher than prior marine bacteria surveys. Under these replete conditions, other major cytosolic Fe-associated proteins were observed including superoxide dismutase (SodA; with other metal SOD isoforms absent under Fe replete conditions) and catalase (KatG) involved in reactive oxygen stress mitigation and aconitase (AcnB), succinate dehydrogenase (FrdB) and cytochromes (QcrA and Cyt1) involved in respiration. With the aid of singular value decomposition (SVD), we were able to computationally attribute peaks within the metallome to specific metalloprotein contributors. A putative Fe complex TonB transporter associated with the closely related Alteromonas bacterium was found to be abundant within the Pacific Ocean mesopelagic environment. Despite the extreme scarcity of Fe in seawater, the marine heterotroph Pseudoalteromonas has expansive Fe storage capacity and utilization strategies, implying that within detritus and sinking particles environments, there is significant opportunity for Fe acquisition. Together these results imply an evolved dedication of marine Pseudoalteromonas to maintaining an Fe metalloproteome, likely due to its dependence on Fe-based respiratory metabolism.M. G. M. was supported by the Camille and Henry Dreyfus Foundation Environmental Chemistry Postdoctoral Fellowship. We thank Kay Bidle (Rutgers University) for providing a culture of Pseudoalteromonas (BB2-AT2). We also thank Dawn Moran (WHOI) and Noelle Held (WHOI-MIT) for culturing assistance. We appreciate the Captain and Crew of the R/V Kilo Moana, and the many involved in the METZYME expedition sampling efforts. Discussions with Kevin Waldron (Newcastle University), Alison Butler (University of California, Santa Barbara), Lauren Manck (Scripps Institution of Oceanography), Randie Bundy (University of Washington) and Jake Gebbie (WHOI) were much appreciated. Funding for this research was provided by the Gordon and Betty Moore Foundation (3782), and NSF-OCE 1658030, 1736599, 1657766, 1924554, 1850719, 1924554

    1WGAJ1226.9+3332: a high redshift cluster discovered by Chandra

    Get PDF
    We report the detection of 1WGAJ1226.9+3332 as an arcminute scale extended X-ray source with the Chandra X-ray Observatory. The Chandra observation and R and K band imaging strongly support the identification of 1WGAJ1226.9+3332 as a high redshift cluster of galaxies, most probably at z=0.85 +- 0.15, with an inferred temperature kT =10 (+4;-3) keV and an unabsorbed luminosity (in a r=120" aperture) of 1.3 (+0.16;-0.14) x 1e45 erg/s (0.5-10 keV). This indication of redshift is also supported by the K and R band imaging, and is in agreement with the spectroscopic redshift of 0.89 found by Ebeling et al. (2001). The surface brightness profile is consistent with a beta-model with beta=0.770 +- 0.025, rc=(18.1 +-0.9)" (corresponding to 101 +- 5 kpc at z=0.89), and S(0)=1.02 +- 0.08 counts/arcsec**2. 1WGAJ1226.9+3332 was selected as an extreme X-ray loud source with FX/FV>60; this selection method, thanks to the large area sampled, seems to be a highly efficient method for finding luminous high z clusters of galaxies.Comment: 5 pages, 5 figures, 1 table. Accepted for publication in ApJ main journal. Uses emulateapj.st

    A2163: Merger events in the hottest Abell galaxy cluster II. Subcluster accretion with galaxy-gas separation

    Full text link
    Located at z = 0.203, A2163 is a rich galaxy cluster with an intra-cluster medium (ICM) that exhibits extraordinary properties, including an exceptionally high X-ray luminosity, average temperature, and a powerful and extended radio halo. The irregular and complex morphology of its gas and galaxy structure suggests that this cluster has recently undergone major merger events that involve two or more cluster components. In this paper, we study the gas structure and dynamics by means of spectral-imaging analysis of X-ray data obtained from XMM-Newton and Chandra observations. From the evidence of a cold front, we infer the westward motion of a cool core across the E-W elongated atmosphere of the main cluster A2163-A. Located close to a galaxy over-density, this gas 'bullet' appears to have been spatially separated from its galaxy (and presumably dark matter component) as a result of high-velocity accretion. From gas brightness and temperature profile analysis performed in two opposite regions of the main cluster, we show that the ICM has been adiabatically compressed behind the crossing 'bullet' possibly because of shock heating, leading to a strong departure of the ICM from hydrostatic equilibrium in this region. Assuming that the mass estimated from the Yx proxy best indicates the overall mass of the system and that the western cluster sector is in approximate hydrostatic equilibrium before subcluster accretion, we infer a merger scenario between two subunits of mass ratio 1:4, leading to a present total system mass of M500 ∝1.9×1015M⊙\propto 1.9 \times 1015 M_{\odot}. The exceptional properties of A2163 present various similarities with those of 1E0657-56, the so-called 'bullet-cluster'. These similarities are likely to be related to a comparable merger scenario.Comment: A&A, in pres

    An X-ray and optical study of the cluster A33

    Get PDF
    We report the first detailed X-ray and optical observations of the medium-distant cluster A33 obtained with the Beppo-SAX satellite and with the UH 2.2m and Keck II telescopes at Mauna Kea. The information deduced from X-ray and optical imaging and spectroscopic data allowed us to identify the X-ray source 1SAXJ0027.2-1930 as the X-ray counterpart of the A33 cluster. The faint, F_{2-10 keV} \approx 2.4 \times 10^{-13} \ergscm2, X-ray source 1SAXJ0027.2-1930, ∌2\sim 2 arcmin away from the optical position of the cluster as given in the Abell catalogue, is identified with the central region of A33. Based on six cluster galaxy redshifts, we determine the redshift of A33, z=0.2409z=0.2409; this is lower than the value derived by Leir and Van Den Bergh (1977). The source X-ray luminosity, L_{2-10 keV} = 7.7 \times 10^{43} \ergs, and intracluster gas temperature, T=2.9T = 2.9 keV, make this cluster interesting for cosmological studies of the cluster LX−TL_X-T relation at intermediate redshifts. Two other X-ray sources in the A33 field are identified. An AGN at z==0.2274, and an M-type star, whose emission are blended to form an extended X-ray emission ∌4\sim 4 arcmin north of the A33 cluster. A third possibly point-like X-ray source detected ∌3\sim 3 arcmin north-west of A33 lies close to a spiral galaxy at z==0.2863 and to an elliptical galaxy at the same redshift as the cluster.Comment: 9 pages, 6 Figures, Latex (using psfig,l-aa), to appear in Astronomy and Astrophysics S. (To get better quality copies of Figs.1-3 send an email to: [email protected]). A&AS, in pres

    Shapley Supercluster Survey (ShaSS): Galaxy Evolution from Filaments to Cluster Cores

    Get PDF
    We present an overview of a multi-wavelength survey of the Shapley supercluster (SSC; z~0.05) covering a contiguous area of 260 h^-2_70 Mpc^2 including the supercluster core. The project main aim is to quantify the influence of cluster-scale mass assembly on galaxy evolution in one of the most massive structures in the local Universe. The Shapley supercluster survey (ShaSS) includes nine Abell clusters (A3552, A3554, A3556, A3558, A3559, A3560, A3562, AS0724, AS0726) and two poor clusters (SC1327- 312, SC1329-313) showing evidence of cluster-cluster interactions. Optical (ugri) and near-infrared (K) imaging acquired with VST and VISTA allow us to study the galaxy population down to m*+6 at the supercluster redshift. A dedicated spectroscopic survey with AAOmega on the Anglo-Australian Telescope provides a magnitude-limited sample of supercluster members with 80% completeness at ~m*+3. We derive the galaxy density across the whole area, demonstrating that all structures within this area are embedded in a single network of clusters, groups and filaments. The stellar mass density in the core of the SSC is always higher than 9E09 M_sun Mpc^-3, which is ~40x the cosmic stellar mass density for galaxies in the local Universe. We find a new filamentary structure (~7 Mpc long in projection) connecting the SSC core to the cluster A3559, as well as previously unidentified density peaks. We perform a weak-lensing analysis of the central 1 sqdeg field of the survey obtaining for the central cluster A3558 a mass of M_500=7.63E14 M_sun, in agreement with X-ray based estimates.Comment: 22 pages, 11 figures. Accepted for publication on MNRA

    Searching for AGN-driven Shocks in Galaxy Clusters

    Get PDF
    Shocks and blastwaves are expected to be driven driven into the intracluster medium filling galaxy groups and clusters by powerful outbursts of active galactic nuclei or quasars in the member galaxies; the first footprints of shock fronts have been tentatively traced out with X-ray imaging. We show how overpressures in the blasts behind the shock can prove the case and also provide specific marks of the nuclear activity: its strength, its current stage, and the nature of its prevailing output. We propose to detect these marks with the aimed pressure probe constituted by the resolved Sunyaev-Zel'dovich effect. We compute and discuss the outcomes to be expected in nearby and distant sources at different stages of their activity.Comment: 4 pages, 1 figure, uses REVTeX4 + emulateapj.cls and apjfonts.sty. Accepted on ApJ

    Bayesian modelling of the cool core galaxy group NGC 4325

    Get PDF
    We present an X-ray analysis of the radio-quiet cool-core galaxy group NGC 4325 (z=0.026) based on Chandra and ROSAT observations. The Chandra data were analysed using XSPEC deprojection, 2D spectral mapping and forward-fitting with parametric models. Additionally, a Markov chain Monte Carlo method was used to perform a joint Bayesian analysis of the Chandra and ROSAT data. The results of the various analysis methods are compared, particularly those obtained by forward-fitting and deprojection. The spectral mapping reveals the presence of cool gas displaced up to 10 kpc from the group centre. The Chandra X-ray surface brightness shows the group core to be highly disturbed, and indicates the presence of two small X-ray cavities within 15 kpc of the group core. The XSPEC deprojection analysis shows that the group has a particularly steep entropy profile, suggesting that an AGN outburst may be about to occur. With the evidence of prior AGN activity, but with no radio emission currently observed, we suggest that the group in in a pre-outburst state, with the cavities and displaced gas providing evidence of a previous, weak AGN outburst.Comment: 12 pages, 10 figures; accepted for publication in MNRA
    • 

    corecore