1,804 research outputs found

    Narrowband Photon Pair Source for Quantum Networks

    Full text link
    We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen such that the emitted photon pair modes can be matched in the region of telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs(s.mW.MHz)1^{-1} is reported. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks

    Quantum random number generation for 1.25 GHz quantum key distribution systems

    Full text link
    Security proofs of quantum key distribution (QKD) systems usually assume that the users have access to source of perfect randomness. State-of-the-art QKD systems run at frequencies in the GHz range, requiring a sustained GHz rate of generation and acquisition of quantum random numbers. In this paper we demonstrate such a high speed random number generator. The entropy source is based on amplified spontaneous emission from an erbium-doped fibre, which is directly acquired using a standard small form-factor pluggable (SFP) module. The module connects to the Field Programmable Gate Array (FPGA) of a QKD system. A real-time randomness extractor is implemented in the FPGA and achieves a sustained rate of 1.25 Gbps of provably random bits.Comment: 6 pages, 8 figure

    High efficiency coupling of photon pairs in practice

    Full text link
    Multi-photon and quantum communication experiments such as loophole-free Bell tests and device independent quantum key distribution require entangled photon sources which display high coupling efficiency. In this paper we put forward a simple quantum theoretical model which allows the experimenter to design a source with high pair coupling efficiency. In particular we apply this approach to a situation where high coupling has not been previously obtained: we demonstrate a symmetric coupling efficiency of more than 80% in a highly frequency non-degenerate configuration. Furthermore, we demonstrate this technique in a broad range of configurations, i.e. in continuous wave and pulsed pump regimes, and for different nonlinear crystals

    Purification of Single-photon Entanglement

    Full text link
    Single-photon entanglement is a simple form of entanglement that exists between two spatial modes sharing a single photon. Despite its elementary form, it provides a resource as useful as polarization-entangled photons and it can be used for quantum teleportation and entanglement swapping operations. Here, we report the first experiment where single-photon entanglement is purified with a simple linear-optics based protocol. Besides its conceptual interest, this result might find applications in long distance quantum communication based on quantum repeaters.Comment: Main article: 5 pages, 4 figure

    Wave function engineering in quantum dot-ring nanostructures

    Get PDF
    Modern nanotechnology allows producing, depending on application, various quantum nanostructures with the desired properties. These properties are strongly influenced by the confinement potential which can be modified, e.g., by electrical gating. In this paper we analyze a nanostructure composed of a quantum dot surrounded by a quantum ring. We show that depending on the details of the confining potential the electron wave functions can be located in different parts of the structure. Since the properties of such a nanostructure strongly depend on the distribution of the wave functions, varying the applied gate voltage one can easily control them. In particular, we illustrate the high controllability of the nanostructure by demonstrating how its coherent, optical, and conducting properties can be drastically changed by a small modification of the confining potential.Comment: 8 pages, 10 figures, 2 tables, revte

    Nonlinear interaction between two heralded single photons

    Full text link
    Harnessing nonlinearities strong enough to allow two single photons to interact with one another is not only a fascinating challenge but is central to numerous advanced applications in quantum information science. Currently, all known approaches are extremely challenging although a few have led to experimental realisations with attenuated classical laser light. This has included cross-phase modulation with weak classical light in atomic ensembles and optical fibres, converting incident laser light into a non-classical stream of photon or Rydberg blockades as well as all-optical switches with attenuated classical light in various atomic systems. Here we report the observation of a nonlinear parametric interaction between two true single photons. Single photons are initially generated by heralding one photon from each of two independent spontaneous parametric downconversion sources. The two heralded single photons are subsequently combined in a nonlinear waveguide where they are converted into a single photon with a higher energy. Our approach highlights the potential for quantum nonlinear optics with integrated devices, and as the photons are at telecom wavelengths, it is well adapted to applications in quantum communication.Comment: 4 pages, 4 figure

    Follicular proliferation TIR3B. The role of total thyroidectomy vs lobectomy

    Get PDF
    Background: TIR3B thyroid nodules are considered to be at risk of malignancy (15-30%) but guidelines recommend conservative surgery with lobectomy with primary diagnostic porpoise. Risk stratification mainly based on ultrasound, elastography and genetic mutations usually may influences the surgical approach. Methods: We retrospectively analyzed 52 cases of TIR3B underwent between 2015 and 2017 total thyroidectomy (TT) and lobectomy (L), focusing mainly on the observed rate of malignancy. Chi-squared test and Fisher's exact probability test were used for analysis, considering a P values less than 0.05 as significant. Results: Out of 52 patients 49 underwent TT and 3 L. In TT group a multinodular goiter was associated in 67.3% of patients. Malignancy rate was 81.6 and 33.3% respectively after TT and L (P 0.003). Multicentric and contralateral tumors were detected respectively in 36.7% and in 32.6% of patients underwent TT. No main post-operative complications were registered. Conclusions: Ultrasound and elastography are useful to define within the TIR3B group those lesions at higher risk and therefore requiring a more radical approach. TT seems an appropriate approach to TIR3B lesions, especially in multinodular goiter, considering the incidence of malignancy with probably higher rate than previously reported

    Mechanism of the Inhibition of Ca2+-Activated Cl− Currents by Phosphorylation in Pulmonary Arterial Smooth Muscle Cells

    Get PDF
    The aim of the present study was to provide a mechanistic insight into how phosphatase activity influences calcium-activated chloride channels in rabbit pulmonary artery myocytes. Calcium-dependent Cl− currents (IClCa) were evoked by pipette solutions containing concentrations between 20 and 1000 nM Ca2+ and the calcium and voltage dependence was determined. Under control conditions with pipette solutions containing ATP and 500 nM Ca2+, IClCa was evoked immediately upon membrane rupture but then exhibited marked rundown to ∼20% of initial values. In contrast, when phosphorylation was prohibited by using pipette solutions containing adenosine 5′-(β,γ-imido)-triphosphate (AMP-PNP) or with ATP omitted, the rundown was severely impaired, and after 20 min dialysis, IClCa was ∼100% of initial levels. IClCa recorded with AMP-PNP–containing pipette solutions were significantly larger than control currents and had faster kinetics at positive potentials and slower deactivation kinetics at negative potentials. The marked increase in IClCa was due to a negative shift in the voltage dependence of activation and not due to an increase in the apparent binding affinity for Ca2+. Mathematical simulations were carried out based on gating schemes involving voltage-independent binding of three Ca2+, each binding step resulting in channel opening at fixed calcium but progressively greater “on” rates, and voltage-dependent closing steps (“off” rates). Our model reproduced well the Ca2+ and voltage dependence of IClCa as well as its kinetic properties. The impact of global phosphorylation could be well mimicked by alterations in the magnitude, voltage dependence, and state of the gating variable of the channel closure rates. These data reveal that the phosphorylation status of the Ca2+-activated Cl− channel complex influences current generation dramatically through one or more critical voltage-dependent steps

    Risk factors for recurrence in patients with Clostridium difficile infection due to 027 and non-027 ribotypes

    Get PDF
    Objectives: Our objective was to evaluate factors associated with recurrence in patients with 027+ and 027– Clostridium difficile infection (CDI). Methods: Patients with CDI observed between January and December 2014 in six hospitals were consecutively included in the study. The 027 ribotype was deduced by the presence of tcdB, tcdB, cdt genes and the deletion Δ117 in tcdC (Xpert® C. difficile/Epi). Recurrence was defined as a positive laboratory test result for C. difficile more than 14 days but within 8 weeks after the initial diagnosis date with reappearance of symptoms. To identify factors associated with recurrence in 027+ and 027– CDI, a multivariate analysis was performed in each patient group. Subdistributional hazard ratios (sHRs) and 95% confidence intervals (95%CIs) were calculated. Results: Overall, 238 patients with 027+ CDI and 267 with 027– CDI were analysed. On multivariate analysis metronidazole monotherapy (sHR 2.380, 95%CI 1.549–3.60, p <0.001) and immunosuppressive treatment (sHR 3.116, 95%CI 1.906–5.090, p <0.001) were factors associated with recurrence in patients with 027+ CDI. In this patient group, metronidazole monotherapy was independently associated with recurrence in both mild/moderate (sHR 1.894, 95%CI 1.051–3.410, p 0.033) and severe CDI (sHR 2.476, 95%CI 1.281–4.790, p 0.007). Conversely, non-severe disease (sHR 3.704, 95%CI 1.437–9.524, p 0.007) and absence of chronic renal failure (sHR 16.129, 95%CI 2.155–125.000, p 0.007) were associated with recurrence in 027– CDI. Conclusions: Compared to vancomycin, metronidazole monotherapy appears less effective in curing CDI without relapse in the 027+ patient group, independently of disease severity

    New strains obtained after UV treatment and protoplast fusion of native Trichoderma harzianum: their biocontrol activity on Pyrenochaeta lycopersici

    Get PDF
    Indexación: ScieloThe obtainment of 30 new strains from native Trichoderma harzianum after UV light irradiation (UV-A and UV-C), and of 82 strains resulted from protoplast fusion were accomplished. The new strains, initially selected for their growing rate under low temperature and high pH conditions, as well as for their innocuousness on tomato plants, were tested for in vitro inhibition of Pyrenochaeta lycopersici in dual cultures and due to secretion of volatile and diffusible metabolites. All the UV-A and UV-C selected candidate mutants were innocuous to tomato plants, but none of them showed improvement in their biocontrol activity on P. lycopersici. Th12A20.1 increased 1.3 and 1.9 fold the total fresh weight of Fortaleza tomato plants when compared to its parental strains Th12 and Th11, respectively. The selected candidate mutants obtained through protoplast fusion were also innocuous to tomato plants, but only ThF1-2 and ThF4-4 inhibited 1.3 fold (in dual cultures) and 5 fold (due to secretion of volatile metabolites) the growth of P. lycopersici, respectively, in relation to the mean inhibitory effect of both parents. Therefore, these candidate mutants could be included in experiments under field conditions
    corecore