1,207 research outputs found

    Elastic Wave Eigenmode Solver for Acoustic Waveguides

    Get PDF
    A numerical solver for the elastic wave eigenmodes in acoustic waveguides of inhomogeneous cross-section is presented. Operating under the assumptions of linear, isotropic materials, it utilizes a finite-difference method on a staggered grid to solve for the acoustic eigenmodes of the vector-field elastic wave equation. Free, fixed, symmetry, and anti-symmetry boundary conditions are implemented, enabling efficient simulation of acoustic structures with geometrical symmetries and terminations. Perfectly matched layers are also implemented, allowing for the simulation of radiative (leaky) modes. The method is analogous to eigenmode solvers ubiquitously employed in electromagnetics to find waveguide modes, and enables design of acoustic waveguides as well as seamless integration with electromagnetic solvers for optomechanical device design. The accuracy of the solver is demonstrated by calculating eigenfrequencies and mode shapes for common acoustic modes in several simple geometries and comparing the results to analytical solutions where available or to numerical solvers based on more computationally expensive methods

    EMG Map for Designing the Electrode Shape for Functional Electrical Therapy of Upper Extremities

    Get PDF
    Achieving the functional grasp by electrical stimulation using surface electrodes is a demanding task. The innervations of muscles come via ulnar, radial and median nerves. The anatomy of nerve branches connecting various muscles in the forearm differs significantly between individuals. We hypothesize that the anatomical differences between the paretic and nonparetic arms are minimal. Based on this assumption we developed a method where the differences of muscle activities (EMG) between the healthy and paretic arms recorded by the 24-contact electrode within an array define the target zones to be stimulated on the affected forearm. We used special electrode where magnetic contacts allow simple change of the stimulation pads. The examiner positions the magnetic contact on the pads where the EMG differences are maximal. The stimulator delivers asynchronous stimulation to the selected pads. We proved that the method is working in stroke patients by measuring joint angles and the grasping force. © 2019, Springer Nature Switzerland AG.Biosystems and Biorobotics, Vol. 21This is the peer-reviewed version of the following article: Popović-Maneski, L., Topalović, I., 2019. EMG Map for Designing the Electrode Shape for Functional Electrical Therapy of Upper Extremities, in: Masia, L., Micera, S., Akay, M., Pons, J.L. (Eds.), Converging Clinical and Engineering Research on Neurorehabilitation III, Biosystems & Biorobotics. Springer International Publishing, pp. 1003–1007, http://dx.doi.org/10.1007/978-3-030-01845-0_20

    Mesoscopic Behavior Near a Two-Dimensional Metal-Insulator Transition

    Get PDF
    We study conductance fluctuations in a two-dimensional electron gas as a function of chemical potential (or gate voltage) from the strongly insulating to the metallic regime. Power spectra of the fluctuations decay with two distinct exponents (1/v_l and 1/v_h). For conductivity σ0.1e2/h\sigma\sim 0.1 e^{2}/h, we find a third exponent (1/v_i) in the shortest samples, and non-monotonic dependence of v_i and v_l on \sigma. We study the dependence of v_i, v_l, v_h, and the variances of corresponding fluctuations on \sigma, sample size, and temperature. The anomalies near σ0.1e2/h\sigma\simeq 0.1 e^{2}/h indicate that the dielectric response and screening length are critically behaved, i.e. that Coulomb correlations dominate the physics.Comment: Revised according to referee remark

    The shape of Fe Kα\alpha line emitted from relativistic accretion disc around AGN black holes

    Full text link
    The relativistically broadened Fe Kα\alpha line, originating from the accretion disc in a vicinity of a super massive black hole, is observed in only less than 50\% of type 1 Active Galactic Nuclei (AGN). In this study we investigate could this lack of detections be explained by the effects of certain parameters of the accretion disc and black hole, such as the inclination, the inner and outer radius of disc and emissivity index. In order to determine how these parameters affect the Fe K α\alpha line shape, we simulated about 60,000 Fe K α\alpha line profiles emitted from the relativistic disc. Based on simulated line profiles, we conclude that the lack of the Fe Kα\alpha line detection in type 1 AGN could, be caused by the specific emitting disc parameters, but also by the limits in the spectral resolution and sensitivity of the X-ray detectors.Comment: Based on the talk presented Balkan Workshop BW2018 (10-14 June 2018, Ni\v{s}, Serbia), accepted for publishing in International Journal of Modern Physics A, 8 figures, 1 table, 15 page

    Photo-centric variability of quasars caused by variations in their inner structure: Consequences on Gaia measurements

    Get PDF
    We study the photocenter position variability due to variations in the quasar inner structure. We consider variability in the accretion disk emissivity and torus structure variability due to different illumination by the central source. We discuss possible detection of these effects by Gaia. Observations of the photocenter variability in two AGNs, SDSS J121855+020002 and SDSS J162011+1724327 have been reported and discussed. With investigation of the variations in the quasar inner structure we explore how much this effect can affect the position determination and whether it can be (or not) detected with Gaia mission. We used (a) a model of a relativistic disk, including the perturbation that can increase brightness of a part of the disk, and consequently offset the photocenter position, and (b) a model of a dusty torus which absorbs and re-emits the incoming radiation from accretion disk. We estimated the value of the photocenter offset due to these two effects. We found that perturbations in the inner structure can significantly offset the photocenter. It depends on the characteristics of perturbation and accretion disk and structure of the torus. In the case of two considered QSOs the observed photocenter offsets cannot be explained by variations in the accretion disk and other effects should be considered. We discussed possibility of exploding stars very close to the AGN source, and also possibility that there are two variable sources in the center of these two AGNs that may indicate a binary super-massive black hole system on a kpc (pc) scale. The Gaia mission seems to be very perspective, not only for astrometry, but also for exploring the inner structure of AGNs. We conclude that variations in the quasar inner structure can affect the observed photocenter (up to several mas). There is a chance to observe such effect in the case of bright and low-redshifted QSOs.Comment: 12 pages, 8 figures, 3 tables. Accepted for publication in Astronomy and Astrophysics. Language improved, typos correcte

    Diagnostics of plasma in the ionospheric D-region: detection and study of different ionospheric disturbance types

    Full text link
    Here we discuss our recent investigations of the ionospheric plasma by using very low and low frequency (VLF/LF) radio waves. We give a review of how to detect different low ionospheric reactions (sudden ionospheric disturbances) to various terrestrial and extra-terrestrial events, show their classification according to intensity and time duration, and present some methods for their detections in time and frequency domains. Investigations of detection in time domain are carried out for intensive long-lasting perturbations induced by solar X-ray flares and for short-lasting perturbations caused by gamma ray bursts. We also analyze time variations of signals used in the low ionospheric monitoring after earthquake events. In addition, we describe a procedure for the detection of acoustic and gravity waves from the VLF/LF signal analysis in frequency domain. The research of the low ionospheric plasma is based on data collected by the VLF/LF receivers located in Belgrade, Serbia
    corecore