335 research outputs found
Tunneling spectroscopy for probing orbital anisotropy in iron pnictides
Using realistic multi-orbital tight-binding Hamiltonians and the T-matrix
formalism, we explore the effects of a non-magnetic impurity on the local
density of states in Fe-based compounds. We show that scanning tunneling
spectroscopy (STS) has very specific anisotropic signatures that track the
evolution of orbital splitting (OS) and antiferromagnetic gaps. Both
anisotropies exhibit two patterns that split in energy with decreasing
temperature, but for OS these two patterns map onto each other under 90 degree
rotation. STS experiments that observe these signatures should expose the
underlying magnetic and orbital order as a function of temperature across
various phase transitions.Comment: 12 pages, 9 figures, replacement with minor changes suggested by
referee
Do annual pelvic exams benefit asymptomatic women who receive regular Pap smears?
Q: Do annual pelvic exams benefit asymptomatic women who receive regular Pap smears? Evidence-based answer: No evidence exists to support a clinical benefit from annual pelvic examinations for asymptomatic women who receive Pap smears every 3 to 5 years. However, the American College of Obstetricians and Gynecologists (ACOG) committee on gynecologic practice recommends annual pelvic exams (strength of recommendation [SOR]: C, expert opinion). Urine testing alone reliably diagnoses gonorrhea and chlamydia (SOR: A, systematic review of cohort studies). Pelvic examinations unreliably detect adnexal masses (SOR: B, single cohort study); pelvic exams accompanied by ultrasound fail to affect outcomes in ovarian cancer screening (SOR: B, cohort studies). Pelvic exams aren't necessary before prescribing oral contraceptive pills (OCPs) (SOR: C, expert opinion). Vulvar carcinoma has a low prevalence and is usually symptomatic ((SOR: B, ecologic study and a case series)
Experimental demonstration of the stability of Berry's phase for a spin-1/2 particle
The geometric phase has been proposed as a candidate for noise resilient
coherent manipulation of fragile quantum systems. Since it is determined only
by the path of the quantum state, the presence of noise fluctuations affects
the geometric phase in a different way than the dynamical phase. We have
experimentally tested the robustness of Berry's geometric phase for spin-1/2
particles in a cyclically varying magnetic field. Using trapped polarized
ultra-cold neutrons it is demonstrated that the geometric phase contributions
to dephasing due to adiabatic field fluctuations vanish for long evolution
times.Comment: 4 pages, 4 figure
Effective one-dimensionality of AC hopping conduction in the extreme disorder limit
It is argued that in the limit of extreme disorder AC hopping is dominated by
"percolation paths". Modelling a percolation path as a one-dimensional path
with a sharp jump rate cut-off leads to an expression for the universal AC
conductivity, that fits computer simulations in two and three dimensions better
than the effective medium approximation.Comment: 6 postscript figure
Radiolysis of water ice in the outer solar system: Sputtering and trapping of radiation products
We performed quantitative laboratory radiolysis experiments on cubic water ice between 40 and 120 K, with 200 keV protons. We measured sputtering of atoms and molecules and the trapping of radiolytic molecular species. The experiments were done at fluences corresponding to exposure of the surface of the Jovian icy satellites to their radiation environment up to thousands of years. During irradiation, O2 molecules are ejected from the ice at a rate that grows roughly exponentially with temperature; this behavior is the main reason for the temperature dependence of the total sputtering yield. O2 trapped in the ice is thermally released from the ice upon warming; the desorbed flux starts at the irradiation temperature and increases strongly above 120 K. Several peaks in the desorption spectrum, which depend on irradiation temperature, point to a complex distribution of trapping sites in the ice matrix. The yield of O2 produced by the 200 keV protons and trapped in the ice is more than 2 orders of magnitude smaller than used in recent models of Ganymede. We also found small amounts of trapped H2O2 that desorb readily above 160 K.Fil: Bahr, D.A.. University of Virginia; Estados UnidosFil: Famá, M.. University of Virginia; Estados UnidosFil: Vidal, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Baragiola, Raul Antonio. University of Virginia; Estados Unido
Alzheimer's early detection in post-acute COVID-19 syndrome: a systematic review and expert consensus on preclinical assessments.
The risk of developing Alzheimer's disease (AD) in older adults increasingly is being discussed in the literature on Post-Acute COVID-19 Syndrome (PACS). Remote digital Assessments for Preclinical AD (RAPAs) are becoming more important in screening for early AD, and should always be available for PACS patients, especially for patients at risk of AD. This systematic review examines the potential for using RAPA to identify impairments in PACS patients, scrutinizes the supporting evidence, and describes the recommendations of experts regarding their use.
We conducted a thorough search using the PubMed and Embase databases. Systematic reviews (with or without meta-analysis), narrative reviews, and observational studies that assessed patients with PACS on specific RAPAs were included. The RAPAs that were identified looked for impairments in olfactory, eye-tracking, graphical, speech and language, central auditory, or spatial navigation abilities. The recommendations' final grades were determined by evaluating the strength of the evidence and by having a consensus discussion about the results of the Delphi rounds among an international Delphi consensus panel called IMPACT, sponsored by the French National Research Agency. The consensus panel included 11 international experts from France, Switzerland, and Canada.
Based on the available evidence, olfaction is the most long-lasting impairment found in PACS patients. However, while olfaction is the most prevalent impairment, expert consensus statements recommend that AD olfactory screening should not be used on patients with a history of PACS at this point in time. Experts recommend that olfactory screenings can only be recommended once those under study have reported full recovery. This is particularly important for the deployment of the olfactory identification subdimension. The expert assessment that more long-term studies are needed after a period of full recovery, suggests that this consensus statement requires an update in a few years.
Based on available evidence, olfaction could be long-lasting in PACS patients. However, according to expert consensus statements, AD olfactory screening is not recommended for patients with a history of PACS until complete recovery has been confirmed in the literature, particularly for the identification sub-dimension. This consensus statement may require an update in a few years
An Improved Search for the Neutron Electric Dipole Moment
A permanent electric dipole moment of fundamental spin-1/2 particles violates
both parity (P) and time re- versal (T) symmetry, and hence, also charge-parity
(CP) symmetry since there is no sign of CPT-violation. The search for a neutron
electric dipole moment (nEDM) probes CP violation within and beyond the Stan-
dard Model. The experiment, set up at the Paul Scherrer Institute (PSI), an
improved, upgraded version of the apparatus which provided the current best
experimental limit, dn < 2.9E-26 ecm (90% C.L.), by the RAL/Sussex/ILL
collaboration: Baker et al., Phys. Rev. Lett. 97, 131801 (2006). In the next
two years we aim to improve the sensitivity of the apparatus to sigma(dn) =
2.6E-27 ecm corresponding to an upper limit of dn < 5E-27 ecm (95% C.L.), in
case for a null result. In parallel the collaboration works on the design of a
new apparatus to further increase the sensitivity to sigma(dn) = 2.6E-28 ecm.Comment: APS Division for particles and fields, Conference Proceedings, Two
figure
An Improved Neutron Electric Dipole Moment Experiment
A new measurement of the neutron EDM, using Ramsey's method of separated
oscillatory fields, is in preparation at the new high intensity source of
ultra-cold neutrons (UCN) at the Paul Scherrer Institute, Villigen, Switzerland
(PSI). The existence of a non-zero nEDM would violate both parity and time
reversal symmetry and, given the CPT theorem, might lead to a discovery of new
CP violating mechanisms. Already the current upper limit for the nEDM
(|d_n|<2.9E-26 e.cm) constrains some extensions of the Standard Model.
The new experiment aims at a two orders of magnitude reduction of the
experimental uncertainty, to be achieved mainly by (1) the higher UCN flux
provided by the new PSI source, (2) better magnetic field control with improved
magnetometry and (3) a double chamber configuration with opposite electric
field directions.
The first stage of the experiment will use an upgrade of the RAL/Sussex/ILL
group's apparatus (which has produced the current best result) moved from
Institut Laue-Langevin to PSI. The final accuracy will be achieved in a further
step with a new spectrometer, presently in the design phase.Comment: Flavor Physics & CP Violation Conference, Taipei, 200
Diffuse reflection of ultracold neutrons from low-roughness surfaces
We report a measurement of the reflection of ultracold neutrons from flat, large-area plates of different Fermi potential materials with low surface roughness. The results were used to test two diffuse reflection models, the well-known Lambert model and the micro-roughness model which is based on wave scattering. The Lambert model fails to reproduce the diffuse reflection data. The surface roughness b and correlation length w , obtained by fitting the micro-roughness model to the data are in the range 1 b 3 nm and 10 w 120 nm, in qualitative agreement with independent measurements using atomic force microscop
- …