86 research outputs found

    The key role of CD40 ligand in overcoming tumor-induced dendritic cell dysfunction

    Get PDF
    Overcoming dendritic cell (DC) dysfunction is a prerequisite for successful active immunotherapy against breast cancer. CD40 ligand (CD40L), a key molecule in the interface between T-lymphocytes and DCs, seems to be instrumental in achieving that goal. Commenting on our data that CD40L protects circulating DCs from apoptosis induced by breast tumor products, Lenahan and Avigan highlighted the potential of CD40L for immunotherapy. We expand on that argument by pointing to additional findings that CD40L not only rescues genuine DCs but also functionally improves populations of immature antigen-presenting cells that fill the DC compartment in patients with breast cancer

    Numerical and functional defects of blood dendritic cells in early- and late-stage breast cancer

    Get PDF
    The generation of antitumour immunity depends on the nature of dendritic cell (DC)–tumour interactions. These have been studied mostly by using in vitro-derived DC which may not reflect the natural biology of DC in vivo. In breast cancer, only one report has compared blood DC at different stages and no longitudinal evaluation has been performed. Here we conducted three cross-sectional and one one-year longitudinal assessments of blood DC in patients with early (stage I/II, n=137) and advanced (stage IV, n=36) disease compared to healthy controls (n=66). Patients with advanced disease exhibit markedly reduced blood DC counts at diagnosis. Patients with early disease show minimally reduced counts at diagnosis but a prolonged period (1 year) of marked DC suppression after tumour resection. While differing in frequency, DC from both patients with early and advanced disease exhibit reduced expression of CD86 and HLA-DR and decreased immunostimulatory capacities. Finally, by comparing a range of clinically available maturation stimuli, we demonstrate that conditioning with soluble CD40L induces the highest level of maturation and improved T-cell priming. We conclude that although circulating DC are compromised by loco-regional and systemic breast cancer, they respond vigorously to ex vivo conditioning, thus enhancing their immunostimulatory capacity and potential for immunotherapy

    CD40 signaling predicts response to preoperative trastuzumab and concomitant paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide in HER-2-overexpressing breast cancer

    Get PDF
    Introduction We performed gene expression analysis to identify molecular predictors of resistance to preoperative concomitant trastuzumab and paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide (T/FEC). Methods Pretreatment fine-needle aspiration specimens from 45 patients with HER-2-overexpressing stage II to IIIA breast cancer were subjected to transcriptional profiling and examined for differential expression of various genes and gene sets. The primary endpoint for tumor response was pathologic complete response (pCR). Correlations between pCR and gene expression were sought. Results The overall pCR rate was 64%. Age, nuclear grade, tumor size, nodal status, quantitative expression of estrogen and HER-2 receptor mRNA, and HER-2 gene copy number showed no correlation with pCR. Results of gene set enrichment analysis suggested that the lower expression of genes involved with CD40 signaling is associated with a greater risk of residual cancer after the preoperative chemotherapy that includes trastuzumab. Conclusion CD40 signaling may play a role in determining response to trastuzumab-plus-T/FEC therapy in patients with HER-2-overexpressing breast cancer.PubMedWoSScopu

    Dendritic cell defects in patients with cancer: mechanisms and significance

    Get PDF
    Dendritic cells (DCs) are a complex network of antigen-presenting cells that have an essential role in the modulation of primary immunity. There has been increasing evidence that DCs isolated from patients with malignancy demonstrate functional deficiencies that inhibit the capacity to mount an effective anti-tumor response. In this issue of Breast Cancer Research, Pinzon-Charry and colleagues investigate one of the possible mechanisms by which tumors induce DC dysfunction to evade host immune surveillance. They demonstrate that DCs isolated from the circulation of patients with early-stage breast cancer exhibit increased rates of spontaneous apoptosis. In vitro studies suggest that a soluble factor secreted by breast cancer cells is responsible for this phenomenon. In contrast, ex vivo conditioning of DCs with CD-40 ligand and IL-12 was protective against tumor-induced apoptosis

    IRX-2, a Novel Immunotherapeutic, Enhances Functions of Human Dendritic Cells

    Get PDF
    Background: In a recent phase II clinical trial for HNSCC patients, IRX-2, a cell-derived biologic, promoted T-cell infiltration into the tumor and prolonged overall survival. Mechanisms responsible for these IRX-2-mediated effects are unknown. We hypothesized that IRX-2 enhanced tumor antigen-(TA)-specific immunity by up-regulating functions of dendritic cells (DC). Methodology/Principal Findings: Monocyte-derived DC obtained from 18 HNSCC patients and 12 healthy donors were matured using IRX-2 or a mix of TNF-α, IL-1β and IL-6 ("conv. mix"). Multicolor flow cytometry was used to study the DC phenotype and antigen processing machinery (APM) component expression. ELISPOT and cytotoxicity assays were used to evaluate tumor-reactive cytotoxic T lymphocytes (CTL). IL-12p70 and IL-10 production by DC was measured by Luminex® and DC migration toward CCL21 was tested in transwell migration assays. IRX-2-matured DC functions were compared with those of conv. mix-matured DC. IRX-2-matured DC expressed higher levels (p<0.05) of CD11c, CD40, CCR7 as well as LMP2, TAP1, TAP2 and tapasin than conv. mix-matured DC. IRX-2-matured DC migrated significantly better towards CCL21, produced more IL-12p70 and had a higher IL12p70/IL-10 ratio than conv. mix-matured DC (p<0.05 for all). IRX-2-matured DC carried a higher density of tumor antigen-derived peptides, and CTL primed with these DC mediated higher cytotoxicity against tumor targets (p<0.05) compared to the conv. mix-matured DC. Conclusion: Excellent ability of IRX-2 to induce ex vivo DC maturation in HNSCC patients explains, in part, its clinical benefits and emphasizes its utility in ex vivo maturation of DC generated for therapy. © 2013 Schilling et al

    A defined mechanistic correlate of protection against Plasmodium falciparum malaria in non-human primates.

    Get PDF
    Malaria vaccine design and prioritization has been hindered by the lack of a mechanistic correlate of protection. We previously demonstrated a strong association between protection and merozoite-neutralizing antibody responses following vaccination of non-human primates against Plasmodium falciparum reticulocyte binding protein homolog 5 (PfRH5). Here, we test the mechanism of protection. Using mutant human IgG1 Fc regions engineered not to engage complement or FcR-dependent effector mechanisms, we produce merozoite-neutralizing and non-neutralizing anti-PfRH5 chimeric monoclonal antibodies (mAbs) and perform a passive transfer-P. falciparum challenge study in Aotus nancymaae monkeys. At the highest dose tested, 6/6 animals given the neutralizing PfRH5-binding mAb c2AC7 survive the challenge without treatment, compared to 0/6 animals given non-neutralizing PfRH5-binding mAb c4BA7 and 0/6 animals given an isotype control mAb. Our results address the controversy regarding whether merozoite-neutralizing antibody can cause protection against P. falciparum blood-stage infections, and highlight the quantitative challenge of achieving such protection

    Breast cancer stem cells: implications for therapy of breast cancer

    Get PDF
    The concept of cancer stem cells responsible for tumour origin, maintenance, and resistance to treatment has gained prominence in the field of breast cancer research. The therapeutic targeting of these cells has the potential to eliminate residual disease and may become an important component of a multimodality treatment. Recent improvements in immunotherapy targeting of tumour-associated antigens have advanced the prospect of targeting breast cancer stem cells, an approach that might lead to more meaningful clinical remissions. Here, we review the role of stem cells in the healthy breast, the role of breast cancer stem cells in disease, and the potential to target these cells

    Human breast cancer-derived soluble factors facilitate CCL19-induced chemotaxis of human dendritic cells

    Get PDF
    Breast cancer remains as a challenging disease with high mortality in women. Increasing evidence points the importance of understanding a crosstalk between breast cancers and immune cells, but little is known about the effect of breast cancer-derived factors on the migratory properties of dendritic cells (DCs) and their consequent capability in inducing T cell immune responses. Utilizing a unique 3D microfluidic device, we here showed that breast cancers (MCF-7, MDA-MB-231, MDA-MB-436 and SK-BR-3)-derived soluble factors increase the migration of DCs toward CCL19. The enhanced migration of DCs was mainly mediated via the highly activated JNK/c-Jun signaling pathway, increasing their directional persistence, while the velocity of DCs was not influenced, particularly when they were co-cultured with triple negative breast cancer cells (TNBCs or MDA-MB-231 and MDA-MB-436). The DCs up-regulated inflammatory cytokines IL-1?? and IL-6 and induced T cells more proliferative and resistant against activation-induced cell death (AICD), which secret high levels of inflammatory cytokines IL-1??, IL-6 and IFN-??. This study demonstrated new possible evasion strategy of TNBCs utilizing their soluble factors that exploit the directionality of DCs toward chemokine responses, leading to the building of inflammatory milieu which may support their own growth.ope
    corecore