36 research outputs found

    Not extinct yet: innovations in frequency domain HEM triggered by sea ice studies

    Get PDF
    The last 15 years have brought major innovations in helicopter towed time domain electromagnetics (EM), while few further developments have been made within the classic frequency domain segment. Operational use of frequency domain EM for sea ice thickness mapping acted as a driving force to develop new concepts such as the system under our consideration. Since its introduction we have implemented new concepts aiming at noise reduction and drift elimination. We decreased signal noise base levels by one to two orders of magnitude with changes to the signal transmission concept. Further, we increased the receiver coil dynamic range creating an EM setup without the need for primary field bucking. Finally, we implemented control signals inside the receiver coils to potentially eliminate system drift. Ground tests demonstrate the desired noise reduction and demonstrate drift control, leading to essentially drift free data. Airborne field data confirm these results, yet also show that the procedures can still be improved. The remaining quest is whether these specialised system improvements could also be implemented in exploration helicopter EM (HEM) systems to increase accuracy and efficiency

    An efficient 2D inversion scheme for airborne frequency domain data

    Get PDF
    In many cases, inversion in 2D gives a better description of the subsurface compared with 1D inversion, but, computationally, 2D inversion is expensive, and it can be hard to use for large-scale surveys. We have developed an efficient hybrid 2D airborne frequency-domain electromagnetic inversion algorithm. Our hybrid scheme combines 1D and 2D inversions in a three-stage process, in which each step is progressively more accurate and computationally more expensive than the previous one. This results in an approximately 2x - 6x speedup compared with full 2D inversions, and with only minor changes to the inversion results. Our inversion structure is based on a regular grid, in which each sounding is discretized individually. The 1D modeling code uses layered models with derivatives derived through the finite-difference method, whereas our 2D modeling code uses an adaptive finite-element mesh, and it uses the adjoint-state method to calculate the derivatives. By incorporating the inversion grid structure into the 2D finite-element mesh, interpolation between the different meshes becomes trivial. Large surveys are handled by using local meshing to split large surveys into small sections, which retains the 2D information. The algorithm is heavily optimized and parallelized over the frequencies and sections, with good scalability even on nonuniform memory architecture systems, on which it is generally hard to achieve a satisfactory scaling. The algorithm has been tested successfully with various synthetic studies as well as field examples, of which results from two synthetic studies and a field example are shown

    Peatland Volume Mapping Over Resistive Substrates With Airborne Electromagnetic Technology

    Get PDF
    open6siDespite the importance of peatlands as carbon reservoirs, a reliable methodology for the detection of peat volumes at regional scale is still missing. In this study we explore for the first time the use of airborne electromagnetic (AEM) to detect and quantify peat thickness and extension of two bogs located in Norway, where peat lays over resistive bedrock. Our results show that when calibrated using a small amount of field measurements, AEM can successfully detect peat volume even in less ideal conditions, that is, relatively resistive peat over resistive substrata. We expect the performance of AEM to increase significantly in presence of a conductive substratum without need of calibration with field data. The organic carbon content retrieved from field surveys and laboratory analyses combined with the 3-D model of the peat extracted from AEM allowed us to quantify the total organic carbon of the selected bogs, hence assessing the carbon pool.openSilvestri S.; Christensen C.W.; Lysdahl A.O.K.; Anschutz H.; Pfaffhuber A.A.; Viezzoli A.Silvestri S.; Christensen C.W.; Lysdahl A.O.K.; Anschutz H.; Pfaffhuber A.A.; Viezzoli A

    Chemical cycling and deposition of atmospheric mercury in Polar Regions: review of recent measurements and comparison with models

    Get PDF
    Mercury (Hg) is a worldwide contaminant that can cause adverse health effects to wildlife and humans. While atmospheric modeling traces the link from emissions to deposition of Hg onto environmental surfaces, large uncertainties arise from our incomplete understanding of atmospheric processes (oxidation pathways, deposition, and re-emission). Atmospheric Hg reactivity is exacerbated in high latitudes and there is still much to be learned from polar regions in terms of atmospheric processes. This paper provides a synthesis of the atmospheric Hg monitoring data available in recent years (2011–2015) in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. The cycle of atmospheric Hg in the Arctic and in Antarctica presents both similarities and differences. Coastal sites in the two regions are both influenced by springtime atmospheric Hg depletion events and by summertime snowpack re-emission and oceanic evasion of Hg. The cycle of atmospheric Hg differs between the two regions primarily because of their different geography. While Arctic sites are significantly influenced by northern hemispheric Hg emissions especially in winter, coastal Antarctic sites are significantly influenced by the reactivity observed on the East Antarctic ice sheet due to katabatic winds. Based on the comparison of multi-model simulations with observations, this paper discusses whether the processes that affect atmospheric Hg seasonality and interannual variability are appropriately represented in the models and identifies research gaps in our understanding of the atmospheric Hg cycling in high latitudes

    Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling

    Get PDF
    We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg[superscript 0] observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg[superscript 0] and wet deposition measurements. The optimized global mercury emission to the atmosphere is ~ 5.8 Gg yr[superscript −1]. The ocean accounts for 3.2 Gg yr[superscript −1] (55% of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg[superscript 0]. The optimized Asian anthropogenic emission of Hg[superscript 0] (gas elemental mercury) is 650–1770 Mg yr[superscript −1], higher than its bottom-up estimates (550–800 Mg yr[superscript −1]). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition.National Science Foundation (U.S.). Atmospheric Chemistry Program (1053648

    Developments in frequency domain AEM; tackling drift and noise with a multicomponent, ferrite-core, receiver tipplet

    Get PDF
    The polar oceans' sea ice cover is a challenging geophysical target to map. Current state of practice helicopter-electromagnetic (HEM) ice thickness mapping is limited to 1D interpretation due to common procedures and systems that are mainly sensitive to layered structures. We present a new generation Multi-sensor, Airborne Sea Ice Explorer (MAiSIE) to overcome these limitations. As the actual sea ice structure is 3D and in parts heterogeneous, errors up to 50% are observed due to the common 1D approximation. With MAiSIE we present a new EM concept based on one multi frequency transmitter loop and a three component receiver coil triplet without bucking The small weight frees additional payload to include a line scanner (lidar) and high accuracy INS/dGPS. The 3D surface topography from the scanner with the EM data at from 500 Hz to 8 kHz, in x, y, and z direction, will increase the accuracy of HEM derived pressure ridge geometry significantly. Experience from two field campaigns shows the proof-of-concept with acceptable sensor drift and receiver sensitivity. The preliminary 20 ppm noise level @ 4.1 kHz is sufficient to map level ice thickness with 10 cm precision for sensor altitudes below 13 m

    In situ detection of sensitive clays – Part II: Results

    Get PDF
    Sensitive and quick clays are typically found in Norway, Sweden and Canada, and are characterised by a remoulded undrained shear strength considerably lower than the undisturbed shear strength. In geotechnical engineering, the presence of sensitive clays poses a major challenge. The landslides at Rissa in 1978, and more recently at the Skjeggestad bridge in Norway, are devastating reminders of the potential threats related to such soils. In a construction project it is hence important to 1) determine if there is sensitive clay present and 2) clarify the extent of the quick clay deposit. This is currently done based on interpretation of soundings and to some extent geophysical methods such as electrical resistivity measurements. However, for verification of quick clay, sampling and laboratory testing must be performed. Here, a set of updated and new guidelines for classification of sensitive clays from in-situ measurements are presented. The aim is to provide the geotechnical engineer with a practical classification tools where all available information is utilized and combined efficiently. The classification tools are based on results from methods such as conventional soundings, CPTU with measurement of total force, electrical field vane testing in combination with geophysical methods such as R-CPTU, 2D resistivity profiles (ERT) and airborne electromagnetic measurements (AEM). The methods, and how they are utilized in investigation strategies for detection of quick and sensitive clays, have been described in another paper to this conference. An extensive database of Norwegian test sites forms the basis for the work. The results from this study show that the above mentioned site investigation methods holds information that complements each other, to form a solid basis for detection of sensitive clays. In turn, this opens for more efficient site investigations where all available data are interpreted in a systematic manner to produce a reliable map of sensitive clay deposits.publishedVersio
    corecore