2,738 research outputs found

    Broadband telecom transparency of semiconductor-coated metal nanowires: more transparent than glass

    Get PDF
    Metallic nanowires (NW) coated with a high permittivity dielectric are proposed as means to strongly reduce the light scattering of the conducting NW, rendering them transparent at infrared wavelengths of interest in telecommunications. Based on a simple, universal law derived from electrostatics arguments, we find appropriate parameters to reduce the scattering efficiency of hybrid metal-dielectric NW by up to three orders of magnitude as compared with the scattering efficiency of the homogeneous metallic NW. We show that metal@dielectric structures are much more robust against fabrication imperfections than analogous dielectric@metal ones. The bandwidth of the transparent region entirely covers the near IR telecommunications range. Although this effect is optimum at normal incidence and for a given polarization, rigorous theoretical and numerical calculations reveal that transparency is robust against changes in polarization and angle of incidence, and also holds for relatively dense periodic or random arrangements. A wealth of applications based on metal-NWs may benefit from such invisibility

    Nanostructural changes in cell wall pectins during strawberry fruit ripening assessed by atomic force microscopy

    Get PDF
    Rapid loss of firmness occurs during strawberry (Fragaria × ananassa Duch) ripening, resulting in a short shelf life and high economic losses. The disassembly of cell walls is considered the main responsible for fruit softening, being pectins extensively modified during strawberry ripening (Paniagua et al. 2014). Atomic force microscopy allows the analysis of individual polymer chains at nanostructural level with a minimal sample preparation (Morris et al., 2001). The main objective of this research was to compare pectins of green and red ripe strawberry fruits at the nanostructural level to shed light on structural changes that could be related to softening. Cell walls from strawberry fruits were extracted and fractionated with different solvents to obtain fractions enriched in a specific component. The yield of cell wall material, as well as the amount of the different fractions, decreased in ripe fruits. CDTA and Na2CO3 fractions underwent the largest decrements, being these fractions enriched in pectins supposedly located in the middle lamella and primary cell wall, respectively. Uronic acid content also decreased significantly during ripening in both pectin fractions, but the amount of soluble pectins, those extracted with phenol:acetic acid:water (PAW) and water increased in ripe fruits. Monosaccharide composition in CDTA and Na2CO3 fractions was determined by gas chromatography. In both pectin fractions, the amount of Ara and Gal, the two most abundant carbohydrates, decreased in ripe fruits. The nanostructural characteristics of CDTA and Na2CO3 pectins were analyzed by AFM. Isolated pectic chains present in the CDTA fraction were significantly longer and more branched in samples from green fruits than those present in samples obtained from red fruit. In spite of slight differences in length distributions, Na2CO3 samples from unripe fruits displayed some longer chains at low frequency that were not detected in ripe fruits. Pectin aggregates were more frequently observed in green fruit samples from both fractions. These results support that pectic chain length and the nanostructural complexity of the pectins present in CDTA and Na2CO3 fractions diminish during strawberry fruit development, and these changes, jointly with the loss of neutral sugars, could contribute to the solubilization of pectins and fruit softening. Paniagua et al. (2014). Ann Bot, 114: 1375-1383 Morris et al. (2001). Food Sci Tech 34: 3-10 This research was supported by FEDER EU Funds and the Ministerio de Educación y Ciencia of Spain (grant reference AGL2011-24814)Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Correlations between reflected and transmitted intensity patterns emerging from opaque disordered media

    Get PDF
    The propagation of monochromatic light through a scattering medium produces speckle patterns in reflection and transmission, and the apparent randomness of these patterns prevents direct imaging through thick turbid media. Yet, since elastic multiple scattering is fundamentally a linear and deterministic process, information is not lost but distributed among many degrees of freedom that can be resolved and manipulated. Here we demonstrate experimentally that the reflected and transmitted speckle patterns are correlated, even for opaque media with thickness much larger than the transport mean free path, proving that information survives the multiple scattering process and can be recovered. The existence of mutual information between the two sides of a scattering medium opens up new possibilities for the control of transmitted light without any feedback from the target side, but using only information gathered from the reflected speckle.Comment: 6 pages, 4 figure

    AFM study of strawberry pectin nanostructure and its relevance on fruit texture

    Get PDF
    Atomic force microscopy (AFM) has been used to characterize the nanostructure of cell wall pectins during strawberry fruit growth and ripening, as well as in transgenic fruits with pectinase genes downregulated. This technique allows the imaging of individual polymers at high magnification with minimal sample preparation. AFM studies during fruit development show that pectin size, ramification and aggregation is reduced in ripe fruits. Additionally, transgenic lines with different pectinase genes downregulated (polygalacturonase, pectate lyase and B-galactosidase) also show a more complex pectin nanostructure, including longer chains, higher branching degree and larger presence of aggregates. In all those cases the higher pectin complexity at nanoscale correlates with a reduced softening in strawberry fruits at macroscale level. Globally, our results support the key role of pectins in fruit structure and highlights the use of AFM as a powerful tool to gain insights about the bases of textural fruit quality not only in strawberry, but also in other commercial crops.AGL2017-86531-C2-1-R, Ministerio de Economía, Industria y Competitividad of Spain and FEDER EU funds. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The zinc finger transcription factor PLAGL2 enhances stem cell fate and activates expression of ASCL2 in intestinal epithelial cells

    Get PDF
    O encaminhamento de textos originais para submissão seguem algumas orientações básicas, levando em conta, inicialmente, que devem ser inéditos e que serão submetidos à aprovação de avaliadores especialistas nos temas tratados. Para acessar as informações acerca dos objetivos, da política editorial e das diretrizes e normas de publicação da Revista Trabalho & Educação, clique nos links SOBRE e/ou NORMAS, localizados no topo da página eletrônica da Revista. Agradecemos muitíssimo o interesse em publicar na Revista

    Nanostructural differences in pectic polymers isolated from strawberry fruits with low expression levels of pectate lyase or polygalacturonase genes

    Get PDF
    Our research group has obtained transgenic strawberry plants expressing antisense sequences of either a pectate lyase (APEL lines) [1] or a polygalacturonase gene (APG lines) [2]. Both genes encode ripening-specific endo-pectinases with a common target, deesterified homogalacturonans, but each enzyme act by a different mechanism and pH range. Ripe fruits from both transgenic genotypes were significantly firmer than control, being APG fruits on average 25% firmer than APEL fruits. Cell wall analysis of both transgenic genotypes indicated that pectin fractions extracted with CDTA and sodium carbonate were significantly modified in transgenic fruits [2,3]. To gain insight in the role of these pectinases in pectin disassembly during ripening, CDTA and Na2CO3 pectins have been analyzed by atomic force microscopy (AFM). APEL and APG CDTA pectins had similar contour lengths but both were significantly longer than control. Similarly, APG carbonate chains were longer than control, showing APEL carbonate chains an intermediate length. Furthermore, transgenic pectins displayed a more complex branching pattern and a higher number of micellar aggregates, especially in the sodium carbonate fractions of APG samples. Acid hydrolysis of carbonate pectins reduced the number of micellar aggregates. AFM analyses confirm that the inhibition of both pectinases reduces pectin disassembly, and also suggest that each pectinase acts on specific pectin domains. Particularly, polygalacturonase silencing induces more significant pectin modifications, nicely correlated with the firmer phenotype of APG fruits, than the down-regulation of pectate lyase
    corecore