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The propagation of monochromatic light through a scattering medium produces speckle patterns
in reflection and transmission, and the apparent randomness of these patterns prevents direct imag-
ing through thick turbid media. Yet, since elastic multiple scattering is fundamentally a linear
and deterministic process, information is not lost but distributed among many degrees of freedom
that can be resolved and manipulated. Here we demonstrate experimentally that the reflected and
transmitted speckle patterns are robustly correlated, and unravel all the complex and unexpected
features of this fundamentally non-Gaussian and long-range correlation. In particular, we show that
it is preserved even for opaque media with thickness much larger than the transport mean free path,
proving that information survives the multiple scattering process and can be recovered. The exis-
tence of correlations between the two sides of a scattering medium opens up new possibilities for the
control of transmitted light without any feedback from the target side, but using only information
gathered from the reflected speckle.

INTRODUCTION

In multiply scattering materials, the random inhomo-
geneities in the refractive index scramble the incident
wavefront, mixing colors and spatial degrees of freedom,
resulting in a white and opaque appearance [1]. Under il-
lumination with coherent light and for elastic scattering,
interference produces large intensity fluctuations that are
not averaged out by a single realization of the disorder,
resulting in a seemingly random speckle pattern [2]. In
principle the speckle pattern encodes all the information
on the sample and the incident light [3], and complete
knowledge of the scattering matrix allows one to reverse
the multiple scattering process and to recover the ini-
tial wavefront, thus permitting imaging through turbid
materials [4, 5].

Speckle patterns are not as random as they appear at
first sight. Interference between the possible scattering
paths in the medium are known to produce spatial corre-
lations between the intensity measured at different posi-
tions [6–8], and correlations of different ranges have been
identified [9]. Short-range correlations determine the size
of a speckle spot, while long-range correlations emerge as
a consequence of constraints such as energy conservation
or reciprocity [10–12]. The idea of using spatial corre-
lations for imaging has recently emerged [13, 14], but it
has been so far limited to the optical memory effect [15],
a correlation of purely geometrical origin.

At first glance, as transmitted and reflected waves are
expected to undergo very different multiple scattering se-
quences, correlations between transmitted and reflected
wavefronts are expected to quickly average to zero. Very
little attention has been given to the cross-correlation be-
tween the intensities measured at two points on opposite
sides of the scattering medium (i.e., in the reflected and

transmitted speckles patterns), their existence being only
mentioned in passing [16, 17]. However, a recent theoret-
ical study suggested that a long-range correlation should
survive even for thick (opaque) scattering media [18].
The existence of this reflection-transmission correlation
suggests that one could non-invasively extract informa-
tion on the transmitted speckle from a measurement re-
stricted to the reflection half-space. As the discovery of
new speckle correlation, like the recently described shift
memory effect [19], have been systematically translated
into novel imaging techniques in the past [20], we suggest
that the reflection-transmission correlation we describe
here will be of fundamental importance for future de-
velopments of applications based on reflection measure-
ments, such as in vivo biological imaging [21].

In this work, we identify the non-trivial conditions re-
quired to detect the correlation between transmitted and
reflected speckle patterns and report the first experimen-
tal proof of its existence. Furthermore, we show that this
correlation is robust and we provide a complete under-
standing of all its complex features, for scattering ma-
terials with thickness L and scattering mean free path
` covering all the range from single scattering (L . `)
to diffusive transport (L � `). The data are supported
by 3D numerical simulations and by a theoretical anal-
ysis of the lineshape of the correlation function, and its
dependence on the experimental parameters. The exper-
iments and the theory embrace the complexity and the
richness of the phenomenon, thus opening the way to its
use as a basic ingredient in the design of new approaches
for sensing, imaging or communicating through opaque
scattering media.

Although major properties of speckle patterns are well
captured by modelling wave propagation with Gaussian
random processes [22], we will show that the cross-sample
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correlation emerges from a non-Gaussian correction to
the speckle properties. As a consequence, the correlation
function is always small in amplitude but long-range. In
particular, it does not contain any feature oscillating at
the wavelength scale. In addition, we will demonstrate
that the correlation function is independent of the dis-
order strength in the regime of large optical thickness in
which the medium is opaque. This means that changing
the scattering mean free path `, for example by chang-
ing the density of scatterers, does not affect the corre-
lation function. Hence, the dimensionless conductance
(proportional to `) is not the crucial parameter govern-
ing the cross-sample correlation measured here, contrary
to the behaviour of long-range correlations measured in
transmission, that have been extensively studied [7, 8].
Furthermore, we will show that the information content
of the correlation function between reflection and trans-
mission crucially depends on the distance to the sample.
This is also in sharp contrast with long-range transmis-
sion correlations for which far-field and surface correla-
tions are essentially related by Fourier transforms so that
they carry the same information. Finally, we will identify
a regime of moderate optical thickness where the correla-
tion function becomes anisotropic and keeps a memory of
the illumination angle. This memory effect, due to long-
range correlations, has never been detected before and
is fundamentally different from the well-known memory
effect observed in transmission or reflection and resulting
from Gaussian statistics [15].

MEASUREMENT OF THE
TRANSMISSION-REFLECTION CORRELATION

The experimental apparatus is shown in Fig. 1(a). A
monochromatic wave (2 mW He-Ne laser) is incident at
an angle ∼ 45◦ on a suspension of TiO2 particles in glyc-
erol, held between two microscope slides to form a scat-
tering slab. The slab thickness L is controlled using cali-
brated spacers, and the mean free path ` is controlled by
varying the TiO2 concentration (see Appendix A). Typi-
cal samples with different optical thickness b = L/`, from
semitransparent to fully opaque are shown in Fig. 1(b).
For a set of given L and ` we record the intensity pat-
terns R(r) and T (r) on the surface of the sample in re-
flection and transmission respectively, with two identical
imaging systems each composed by a 10x microscope ob-
jective, a plano-convex 150 mm lens, and CCD camera
(Allied Vision Manta G-146). As the samples are liq-
uid the resulting speckle patterns change in time due to
Brownian motion of the scatterers, with a decorrelation
time τ that depends strongly on the sample thickness.
Choosing an integration time < τ , and a time interval
between successive measurements > τ , allows us to mea-
sure speckle images R(r) and T (r) for a large ensemble
of configurations of the disordered medium. For all our

Figure 1. (a) Experimental setup. A scattering slab, formed
by a suspension of TiO2 particles in glycerol, is illuminated
by a laser beam incident at an angle ∼ 45◦. The speckle pat-
terns on the two surfaces, T (x, y) and R(x, y) respectively, are
recorded with two identical imaging systems. (b) Examples
of samples with thickness L = 20µm but different TiO2 con-
centrations: from left to right 5 g/l, 10 g/l and 40 g/l, which
correspond to a mean free path of (60, 20.4 and 9.8) ± 2.5
µm, respectively.

experiments the integration time was set to 1 ms. An
example pair of images measured for a given realization
of disorder is shown in Fig. 2(a,b). For each pair of R
and T we calculate the correlation function CRT defined
as

CRT (∆r) =
〈δR(r)δT (r + ∆r)〉
〈R(r)〉 〈T (r + ∆r)〉

(1)

where ∆r = (∆x,∆y) is a transverse shift between the
images, and δf = f − 〈f〉 denotes the statistical fluc-
tuation of a random variable f , with 〈·〉 the ensemble
average. In the experiment, the averaging process is per-
formed in two steps (see Appendix B). First, a cross
correlation product between δR and δT , i.e. the inte-
gral

∫
δR(r)δT (r+∆r)dr, is taken for each realization of

disorder. Plotted as a 2D map, the correlation product
appears random, with a granularity similar to that of a
speckle image [Fig. 2(c)]. Second, an ensemble averag-
ing over the realizations of the disorder is taken, result-
ing in the appearance of a clear pattern in CRT (∆x,∆y)
[Fig. 2(d)], and demonstrating that the transmitted and
reflected speckle patterns are indeed correlated.

Speckle correlations are commonly divided into three
categories: Short-range correlations (C1) that decay with
the separation between the observation points on the
scale of the wavelength, long-range correlations (C2) that
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Figure 2. Typical measured speckle patterns in transmis-
sion (a) and reflection (b), for a sample with L = 20µm
and ` ' 60µm. (c) Cross correlation product between the
speckle patterns in (a) and (b). (d) Correlation function
CRT (∆x,∆y) obtained after additional ensemble averaging
from 104 realizations of the disorder. The long-range charac-
ter of the correlation function, that extends far beyond the
size of a speckle spot, is clearly visible.

have a polynomial decay, and infinite-range correlations
(C3) [8, 9]. The short-range correlation C1 corresponds
to the approximation of a field obeying Gaussian statis-
tics [2], while C2 and C3 are non-Gaussian corrections.
An additional infinite-range correlation (C0) appears un-
der illumination by a point source located inside the
medium [23]. One can see in Fig. 2(d) that the lineshape
of CRT (∆r) is much wider than a speckle spot, indicat-
ing that the dominant contribution to this correlation is
long-range in nature.

In order to characterize the lineshape of the correlation
function, and to probe its dependence on the sample pa-
rameters, we measured CRT (∆r) for different values of `
and L, covering the full range from the single scattering
(L . `) to the diffusive (L � `) regime. The results are
summarized in Fig. 3 (center and right columns), where
both 2D maps CRT (∆x,∆y) and cross-sections along the
line ∆y = 0 (indicated as a dotted line in the 2D maps)
are displayed. It is interesting to note that both the
shape and the sign of the reflection/transmission corre-
lation substantially depend on L and `. In the single
scattering regime (optical thickness b . 1), CRT is dom-
inated by a narrow peak (still much larger than a single
speckle spot) with a negative side lobe. In the multiple
scattering regime (b � 1), CRT is dominated by a wide
negative dip.

The short-range contributions to CRT (C1) decay on
the scale of the wavelength [2], and are negligible in
all measurements since in the reflection-transmission ge-

ometry the observation points are separated by a dis-
tance

√
L2 + |∆r|2 which is much larger than λ for

even the thinnest sample (see Appendix C for a de-
tailed discussion). Hence, CRT is necessarily a long-
range correlation of the C2 type. It is interesting to note
that the reflection/transmission geometry naturally fa-
vors the observation of long-range correlations, without
requiring any post-processing to remove the C1 contri-
bution that dominates in the pure transmission geome-
try [10, 11, 24, 25]. Another feature of the experiment
is the illumination/detection geometry that excludes any
contribution from specularly reflected and transmitted
fields. Indeed, in the geometry in Fig. 1(a), the detectors
do not collect the specularly reflected and transmitted
averaged fields, but only the scattered light, i.e. the in-
tensities of the fluctuating fields T (r) = |δET (r)|2 and
R(r) = |δER(r)|2. This permits to track various long-
range correlations all the way from b . 1 to b � 1 by
avoiding spurious interference terms in the intensity cor-
relation function that would not be negligible in the sin-
gle scattering regime. The contribution of the averaged
fields to the full field correlation function is discussed in
Appendix D.

NUMERICAL SIMULATIONS

To support the experimental data, we have performed
full numerical simulations of wave propagation in three-
dimensional disordered media. In the simulations, the
samples consist of slabs of dipole scatterers with random
positions. The scalar wave equation is solved numerically
using the coupled-dipole method [26]. Since the mea-
surements are not resolved in polarization, and since the
input light is expected to depolarize on a length scale
on the order of ` [27], we neglect polarization and nu-
merically solve the scalar wave equation. To limit the
number of scatterers and save computational time, the
polarizability α of each scatterer has been chosen to max-
imize the scattering cross-section σs = k4|α|2/4π leading
to α = 4iπ/k3, where k is the wavenumber. Adjusting
the number density of scatterers ρ, we can vary the scat-
tering mean-free path ` = 1/ρσs and simulate different
kinds of samples. Solving numerically the coupled-dipole
equations, we compute the scattered field at any point on
the input and exit surfaces of the slab, and deduce the
correlation function CRT (∆r). The ensemble averaging
is performed by computing the field for N realizations of
the positions of the scatterers. N should be sufficiently
large to satisfy CRT � σ/

√
N , where σ is the standard

deviation of the unaveraged correlation function. In the
multiple scattering regime, where CRT ∼ 1/(kL)2 and
σ ∼ 1 (see below), we get N � (kL)4. As an ex-
ample, for k` = 10 and b = 1.5, we have used 2685
dipoles and N = 2.6 × 107 configurations. The results
of the simulations are displayed in Fig. 3 (left column),
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Figure 3. Average reflection-transmission correlation function CRT for different values of L and ` and the optical thickness
b = L/`. Left column: 3D numerical simulations of 2D maps of CRT (∆x,∆y). Center and right colums: Experimental results.
For clarity, both 2D maps of CRT (∆x,∆y) and cross-sections along the line ∆y = 0 (indicated as a dotted line in the 2D maps)
are displayed. Two regimes are identified. For moderate optical thickness (b . 1), the correlation function is dominated by a
narrow peak with a negative side lobe. For large optical thicknesses, (b > 1), the correlation function is dominated by a wide
negative dip.

and are in very good agreement with the experimental
data. The general shape of the correlation in the regimes
b < 1, b ' 1 and b > 1 is well reproduced in the simula-
tions. It is also worth noting that, in the experiment, N
must be replaced by the effective number of realizations
Neff = NAL−2 � N that takes into account the spatial
averaging, with A the integration area in the speckle im-
ages. Taking advantage of the small decorrelation time of
the medium and the large field of view of the camera, this
effective number can be made large at will, allowing to
probe the reflection/transmission correlation for sample
thicknesses inaccessible in the simulations.

THEORETICAL ANALYSIS

In order to refine the analysis, and to get more physi-
cal insight, we have also used a formal perturbation the-
ory in which the correlation function CRT (∆r) defined

in Eq. (1) is directly computed from a statistical ensem-
ble averaging, without going through the intermediate
cross correlation product used for the experimental data.
Both averaging processes coincide provided that ` � λ,
a condition that is always satisfied in our experiments.
Formal pertubation theory uses 1/k` as a small parame-
ter, and relies on a diagrammatic formalism that allows
one to derive explicit expressions of intensity correlation
functions [6–8]. In the reflection/transmission geome-
try, care must be taken to properly account for leading
contributions [16, 28].

Let us first discuss the regime of large optical thick-
ness L � ` corresponding to Fig. 3(f-i). Strikingly, we
observe in this regime that CRT (∆r) is negative, in agree-
ment with the prediction in Ref. [18]. This means that
for every bright spot in reflection (transmission) the cor-
responding area in transmission (reflection) is more likely
to be darker, and vice versa. This feature is consistent
with flux conservation arguments. Indeed, defining T ∝
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T (r)dr and R ∝

∫
R(r)dr, energy conservation imposes

T + R = 1 for a non-absorbing medium, from which it
follows that

∫
CRT (∆r)d∆r ∝ 〈δTδR〉 = −〈δT 2〉 < 0.

Note that the existence of negative long-range C2 corre-
lations has been previously pointed out in Refs. [17, 29].

We stress that the previous simple flux conservation
argument imposes a global constraint on the correlation,
but does not determine its sign for each position ∆r.
Only a full theoretical calculation accounting for the in-
terferences between crossing paths can give the full line-
shape of CRT (∆r). Nonetheless, an intuitive understand-
ing of the local sign of the reflection-transmission speckle
correlation can be built in the following way. In a thick
scattering slab, interferences create large fluctuations of
the wave intensity at the scale of the wavelength (bulk
speckle pattern). These intensity fluctuations create local
fluctuations of the energy flux, that act as a source term
for the diffusive transport of the intensity towards the
medium boundaries. This mechanism is formally anal-
ogous to that of particle diffusion driven by Langevin
forces in a molecular fluid [30, 31]. Due to local flux con-
servation, a positive flux fluctuation pointing towards the
transmission interface has to be compensated on average
by a negative fluctuation pointing towards the reflection
interface, giving rise to a local negative correlation. This
analysis shows that the existence of R-T correlations does
not rely on energy conservation, so that we expect the
correlation to be robust against absorption.

In Appendix E, we have refined the theoretical analysis
performed in Ref. [18] in the regime L & `� λ. We find
that both the amplitude and the width of the correla-
tion function depend on L and `, as in the experimental
data in Figs. 3(f-i). For L � `, the dominant diagrams
belong to the class represented in Fig. 4(a), that are typi-
cal of long-range C2 correlation functions. They predict a
correlation function that is isotropic, independent of the
angle of incidence, and scales as CRT (∆r) = CRT2 (∆r) =
−f(|∆r|)/(kL)2, where f is a dimensionless function that
decays on a range |∆r| ' L [18]. This long-range charac-
ter of the correlation function originates from the crossing
of two diffusive paths that probe a transverse distance L
before escaping, as represented in Fig. 4(a). Note that
this path crossing is the analogous of the source term in
the Langevin picture mentioned above. Moreover, the
correlation function in this regime is independent of the
disorder strength k`, which makes it strikingly different
from that observed in a pure transmission geometry, for
which CTT2 ∼ 1/[(k`)(kL)] ∝ 1/g, where g is the dimen-
sionless conductance of the sample [9]. Another impor-
tant difference between CRT2 and CTT2 is the evolution of
their information content with respect to the detection
scheme. Although CTT2 contains the same information
whether it is measured on the sample surface or in the far
field, this is not the case for CRT2 . Indeed, in the far field,
we have CRT (kb,kb′) ∼

∫
CRT (∆r)d∆r = const. for any

pair of observation directions kb,kb′ , as the information

Figure 4. Diagrams contributing to the CRT (∆r) correlation.
An intensity correlation depends on 2 intensities (4 fields) that
propagate through the sample, therefore involving 4 inputs
and 4 outputs. Shaded tubes represent diffusive paths and
open circles stand for scatterers; single solid lines stand for
averaged fields and single dashed lines for their complex conju-
gates. The diagram in panel (a) is representative of the class
of C2 diagrams describing the negative contribution of the
correlation function at large optical thickness (L� `). Panel
(b) represents the class of C0-type diagrams that contribute
to the positive peak dominant in the regime ` ∼ L� λ.

content is spread uniformly over all degrees of freedom.
We give a more detailed explanation of this phenomenon
in Appendix E. For this reason we focus our discussion
on the correlations measured on the sample surface.

In the regime of moderate optical thickness ` ∼ L� λ,
where single scattering is expected to dominate, an in-
tensity correlation extending far beyond the size of a sin-
gle speckle spot is still observed [see Fig. 3(c-e)], but
with a positive peak appearing in the vicinity of the
negative contribution. The apparent relative position
and amplitude between the peak and the dip depends
on the angle of incidence of the illumination (see Ap-
pendix F). Contrary to the negative dip in the corre-
lation function observed at large optical thickness, the
lineshape is anisotropic, with negative side lobes (hardly
visible the experimental data in Fig. 3(c-e), but visible
in the calculations presented in Appendix F) that are
more pronounced along the direction of the projection of
the incident beam onto the sample surface. Moreover,
the amplitudes of both the positive peak and the side
lobes substantially depend on the incidence angle. These
two features of the correlation function (long-range ex-
tent and dependence on the angle of incidence) suggest
a qualitative description based on diagrams of the class
represented in Fig. 4(b). Such diagrams satisfy both
properties simultaneously. The field exchange, that cre-
ates the correlation, occurs on the first scattering event,
and encodes a phase difference in the subsequent diffusive
paths (shaded tubes) that depends on the angle of inci-
dence. Moreover, the diffusive propagation provides the
long-range behavior. The theoretical evaluation of these
diagrams is detailed in Appendix G. They lead to a con-
tribution to the correlation function scaling as 1/(kL)4

for b � 1. This is consistent with the fact that, accord-
ing to the measurements and the numerical simulations,
this contribution has to be negligible at large optical
thickness, where the CRT2 correlation function discussed
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previously scaling as 1/(kL)2 dominates. The observed
anisotropy in the correlation function is also well repro-
duced, supporting the relevance of the analysis based on
the diagrams in Fig. 4(b). Interestingly, these diagrams
are formally similar to those leading to the infinite-range
correlations C0 observed when the sample is excited by
a point source [23, 32]. In a non-absorbing medium, as a
consequence of energy conservation, the C0 contribution
is related to the fluctuations of the local density of states
at the source position [33, 34]. In the present context,
where a plane wave excitation is used, the C0-type contri-
bution to the reflection-transmission correlation function
is long-range and satisfies

∫
〈CRT0 (∆r)〉d∆r = 0. This

property also leads to the conclusion that the C0-type
contribution observed is specific to speckle patterns mea-
sured on the surface of the sample, and vanishes in the
case of far-field angular measurements.

Finally, in the quasi-ballistic regime `� L� λ, which
is not the focus of our experiment, we expect the cor-
relation CRT to contain additional contributions to C2

and C0 (see the discussion in Appendix G), that still re-
sult in an overall positive peak. Note that this positive
correlation does not contradict the flux conservation ar-
gument mentioned earlier. Indeed, this argument rigor-
ously applies for intensity correlations built from the total
fields (including the averaged reflected and transmitted
fields), which coincides with the measured correlation (1)
at large optical thickness only (see Appendix D).

CONCLUSIONS

In summary, we have demonstrated experimentally the
existence of a cross-correlation between the speckle pat-
terns measured in reflection and transmission on the
surface of a disordered medium. The correlation per-
sists in the regime of large optical thickness L � ` in
which the sample is opaque due to multiple scattering.
The measurements are supported by 3D numerical sim-
ulations, and have been analysed using a perturbative
theory (valid when ` � λ). We have found that the
reflection-transmission correlation has two contributions:
a positive peak dominant at moderate optical thicknesses
L . `, and a negative dip dominant in the diffusive
regime L � `, which we interpret as (respectively) C0

and C2-type scattering sequences. In the regime L � `,
the amplitude of CRT scales as 1/(kL)2 in 3D, but at
the same time the range over which the correlation has
an effect grow as L2, compensating the decrease in am-
plitude with the increase of the number of speckle spots
contributing to the cross information [35]. The possi-
bility to extract information on the transmitted speckle
from a measurement limited to the reflection half-space
offers new possibilities for the detection of objects hidden
behind opaque scattering media, including ghost imag-
ing schemes, and for the control of wave propagation by

wavefront shaping techniques [36, 37].
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APPENDIX A: MEAN FREE PATH
CHARACTERIZATION

In order to determine the mean free path of the three
samples with different concentrations of the TiO2 we used
the well known Lambert-Beer law I = I0e

−L/`e where
I and I0 are the transmitted and initial intensities re-
spectively, L is the thickness of the sample and `e the
extinction length. This law measures the attenuation of
the ballistic light when going through the sample. Since
absorption in the sample of TiO2 and glycerol is neg-
ligible (albeit non zero) compared to scattering we can
consider `e ≈ `. We measured the attenuation of the
ballistic beam for different thicknesses of the sample and
obtained the scattering mean free path of the three dif-
ferent samples by fitting the Lambert-Beer law, as shown
in Fig. 5.

The scattering mean free paths for the samples with
concentrations of 50 mg of TiO2, 150 mg of TiO2, and
400 mg of TiO2 in 10 ml of glycerol were found to be,
respectively, 58.5 ± 1.3 µm, 18.0 ± 0.5 µm, and 6.9 ±
0.7 µm.

APPENDIX B: EXPERIMENTAL
DETERMINATION OF THE CORRELATION

FUNCTION

Experimentally, the determination of the intensity cor-
relation function CRT (∆r) defined by Eq. (1) is per-
formed in two steps. First, a spatially averaged function
CRT (∆r) =

∫
δR(r)δT (r + ∆r)dr is calculated for each

pair of reflected and transmitted speckle images. Then,
an ensemble averaging is performed leading to the cor-
relation function 〈CRT (∆r)〉. In this appendix, we com-

ment on the definition of CRT (∆r) that allows us to re-
move some experimental artefacts, and we detail the nec-
essary conditions for the correlation function 〈CRT (∆r)〉
to coincide with the usual correlation function CRT (∆r)
that only involves ensemble averaging.
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Figure 5. Experimental data to determine the mean free path
of the three different sample concentrations we used. In red
is the data corresponding to the concentration of 50 mg of
TiO2in 10 ml of glycerol, in blue the concentration of 150 mg
of TiO2 in 10 ml of glycerol and in yellow, the data corre-
sponding to the concentration of 400 mg of TiO2 in 10 ml of
glycerol. The black dashed lines represent the Lambert-Beer
law fitting to the corresponding experimental data.

Measuring images (including speckle patterns) with co-
herent light inevitably leads to artefacts due to inter-
ference of the signal with scattered light. Figures 6(a)
and 6(b) show an example of a raw measurement for the
speckle patterns in transmission and reflection. From a
single measurement it is almost impossible to notice, but
all the raw measurements sit on a irregular fringe pat-
tern background due to the reflections in the protective
glass window in front of the CCD detector. In fact, if we
average the raw measurements over disorder, the speckle
patterns average out and the inhomogeneous background
becomes apparent [see Figs. 6(c,d)].

If one were to use the raw measurements to find the
cross-correlation function, the correlation between the in-
homogeneous background patterns would dominate and
obscure any real speckle correlation [see Fig. 6(e)]. These
artefacts can be eliminated using the following proce-
dure. Let us denote by Sm the measured speckle pattern
in reflection or transmission, and by F the unwanted
fringes. We have Sm = S + F , where S is the desired
speckle pattern, and F is unknown but is also the same
for each realization of disorder. Thus we can calculate
Sm − 〈Sm〉 = S + F − (〈S〉 + F ) = S − 〈S〉 = δS. This
procedure eliminates F , and directly leads to a measure-
ment of δS. For this reason, we have defined a spatially
averaged function

CRT (∆r) = N−1
1 δR(r)δT (r + ∆r), (2)

with the normalization factor

N1 =
[
δR(r)− δR(r)

]21/2

×
[
δT (r + ∆r)− δT (r + ∆r)

]21/2

. (3)

Here the overline represents the spatial average over the
coordinate r. This quantity is directly accessible from

Figure 6. Typical raw average intensity measurement in re-
flection (a) and transmission (b). Averaged intensity distri-
bution over 2000 realizations of disorder in reflection (c) and
transmission (d). The inhomogeneous background is clearly
visible in both 〈R〉 and 〈T 〉. (e) Direct cross-correlation of
R and T (without subtracting the background). (f) Cross-
correlation between δR and δT as described in the main text.

the experimental data, and is free of artefacts as shown
in Fig. 6(f).

In the experiment, the spatially averaged function
CRT (∆r) is averaged over an ensemble of realizations

of disorder, leading to a correlation function 〈CRT (∆r)〉.
Assuming that spatial and ensemble averaging are equiv-
alent, we can write 〈CRT (∆r)〉 ' N−1

2 〈δR(r)δT (r+∆r)〉,
with

N2 =
〈

[δR(r)− 〈δR(r)〉]2
〉1/2

×
〈

[δT (r + ∆r)− 〈δT (r + ∆r)〉]2
〉1/2

. (4)

This correlation differs from Eq. (1) since the normaliza-
tion factor N2 involves intensity fluctuations in reflection
and transmission, and not averaged values. Since the ex-
periments are carried out in the weak scattering regime
k`� 1, we can assume that the intensity in each speckle
pattern follows a Rayleigh statistics to a very good ap-
proximation. This amounts to neglecting non-Gaussian
contributions to the field in each speckle pattern. In this
case we have 〈δR2〉 = 〈R〉2 and 〈δT 2〉 = 〈T 〉2, and

〈CRT (∆r)〉 ' CRT (∆r) =
〈δR(r)δT (r + ∆r)〉
〈R(r)〉〈T (r + ∆r)〉

. (5)

We illustrate the good agreement between 〈CRT (∆r)〉
and CRT (∆r) in Fig. 7, where both correlations have
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Figure 7. Comparison between the two correlation functions
〈CRT (∆r)〉 and CRT (∆r). The transverse distance ∆r =
∆x is varied along the direction of the illumination plane.
Parameters of the 3D numerical simulation: L/` = 1.5, k` =
10, θa ' 45◦.

been calculated numerically for a 3D scattering medium
with optical thickness b = 1.5 and scattering strength
k` = 10.

APPENDIX C: GAUSSIAN AND
NON-GAUSSIAN CONTRIBUTIONS TO THE

CORRELATION FUNCTION

The calculation of the correlation function given in
Eq. (1) requires to evaluate

〈R(r)T (r′)〉 = 〈δER(r)δER(r)∗δET (r′)δET (r′)∗〉 (6)

where r′ = r + ∆r. The Gaussian contribution, usually
denoted C1, is obtained by pairing fields to form aver-
ages of complex conjugate pairs. On the other hand,
non-Gaussian contributions necessarily involve scatter-
ing paths that connect four fields, since 〈δER(r)〉 =
〈δET (r)〉 = 0. By noting 〈. . . 〉c the non-Gaussian contri-
butions, we obtain

CRT (∆r) =
|〈δER(r)δET (r′)∗〉|2

〈R(r)〉〈T (r′)〉

+
〈δER(r)δER(r)∗δET (r′)δET (r′)∗〉c

〈R(r)〉〈T (r′)〉
. (7)

The first term of Eq. (7) is the C1 contribution. This
contribution can be large, of the order of unity, if the
distance between observations points is smaller than the
wavelength. This is always possible in the T-T con-
figuration, where points r and r′ are measured in the
same plane: the C1 contribution dominates the correla-
tion CTT (∆r) for ∆r . λ. On the contrary, in the R-T
configuration, the distance between observation points
is
√
L2 + ∆r2. Therefore, the C1 contribution is always

negligible for L� λ, as it is the case in our experiment.
We have checked numerically that this statement remains

valid at moderate optical thickness, where the diffusion
approximation breaks down. In Fig. 8 we compare the
full correlation CRT (∆r) with the C1 contribution and
the connected contribution [last term of Eq. (7)], calcu-
lated from microscopic wave propagation simulation in a
three-dimensional slab of optical thickness L/` = 1 and
scattering strength k` = 15. We observe that the full
correlation [Fig. 8(a)] is well approximated by its con-
nected part [Fig. 8(b)], indicating that the C1 contribu-
tion [Fig. 8(c)] is indeed negligible. Other simulations
(not shown) revealed that the C1 contribution becomes
important for kL . 1, as expected. This analysis shows
that the R-T configuration is particularly adapted to ac-
cess and study non-Gaussian quantities in mesoscopic
physics, such as the connected and long-range contri-
butions 〈δER(r)δER(r)∗δET (r′)δET (r′)∗〉c. Indeed the
latter dominate the correlation in the full range from
the deep diffusive (L � `) to the quasi-ballistic (L . `)
regime. This is in sharp contrast with the the T-T config-
uration, for which it is difficult to extract the small non-
Gaussian part of the correlation: this requires a delicate
fitting procedure or an additional field measurement that
can be cumbersome with optical waves, see for instance
Refs. [32, 38].

APPENDIX D: R-T CORRELATION BUILT
FROM THE TOTAL REFLECTED AND

TRANSMITTED FIELDS

The experiment is performed with a laser illumina-
tion oriented with a non-zero angle with respect to the
sample surface, that allows us to measure the intensity
of the fluctuating part of the fields, R(r) = |δER(r)|2
and T (r′) = |δET (r′)|2, only. We want here to discuss
what would be the R-T correlation if the mean fields
were also measured. Let us note X̃(r) = |EX(r)|2 =
|〈EX(r)〉+ δEX(r)|2, where X stands for R or T . By ex-
pressing X̃ in terms of X and using 〈X̃〉 = 〈X〉+|〈EX〉|2,
we get:

〈δR̃(r)δT̃ (r′)〉 = 〈δR(r)δT (r′)〉+
+2 Re [〈ET (r′)〉〈δET (r′)∗R(r)〉 +

+〈ER(r)〉〈δER(r)∗T (r′)〉+
+〈ER(r)〉〈ET (r′)〉∗〈δER(r)∗δET (r′)〉+
+ 〈ER(r)〉〈ET (r′)〉〈δER(r)δET (r′)〉∗] .

(8)

Hence, the R-T correlation built from the total reflected
and transmitted fields contains additional interferences
between the mean fields and the scattered fields. We
illustrate their role in Fig. 9, where we compare CRT

[(a) panel] and C̃RT [(b) panel] calculated for a 3D dis-
ordered slab (L/` = 1, k` = 15, illumination angle
θa = 45◦). On top of the long-range component of CRT ,
C̃RT also exhibits tiny oscillating contributions and ad-
ditional long-range contributions due to the four terms
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Figure 8. Correlation function CRT calculated from numerical simulation of the wave equation in a 3D slab. (a) Full correlation;
(b) Connected part of the correlation [second term of the r.h.s. of Eq. (7)]; (c) C1 contribution of the correlation [first term of
the r.h.s. of Eq. (7)]. Parameters: k` = 15, L/` = 1, θa ' 45◦.

of Eq. (8). These contributions, negligible in the deep
diffusive regime L � `, become important at moderate
optical thickness L ∼ `. This explains why the positive
contribution to the long-range correlation discussed in
this work was not detected in Ref. [18] where only C̃RT

was analyzed. In Fig. 10 we compare both correlation
functions, calculated from 2D numerical simulations such
as those performed in Ref. [18], for two different optical
depths. At large optical depth the two correlations are
equal while it is no more the case in the regime L ∼ `
where interference terms dominate.

APPENDIX E: ANALYTICAL CALCULATION
OF CRT

2 (∆r)

In this appendix we refine the calculation of CRT2 that
was previously performed by some of us in Ref. [18]. Let
us first remind the physical picture that gives rise to the
long-range C2 correlation. The correlator (5) is the aver-
age of four fields (measured at the two detector positions)

Figure 9. Comparaison of two R-T correlation functions
calculated from numerical simulation of the wave equa-
tion in a 3D slab. (a) Correlation function CRT (∆r) =
〈δR(r)δT (r + ∆r)〉/〈R(r)〉〈T (r + ∆r)〉 built from fluctuat-

ing parts of the fields; (b) Correlation function C̃RT =

〈δR̃(r)δT̃ (r + ∆r)〉/〈R̃(r)〉〈T̃ (r + ∆r)〉 built from the full
fields (see text for details). Parameters: k` = 15, L/` = 1,
θa = 45◦.

Figure 10. Comparaison of two R-T correlation functions cal-
culated from numerical simulation of the wave equation in a
2D slab. (a) moderate optical thickness L = ` and shifted
incidence θa ' −35◦ ; (b) Large optical thickness L/` = 7 at
normal incidence θa = 0. Other parameter: kl = 10.

that can be decomposed as sums over all scattering paths.
The idea is to select paths that give a non-vanishing con-
tribution to the average. The CRT2 contribution is ob-
tained by considering pairs of fields that propagate dif-
fusively in the disordered medium until their paths cross
at an arbitrary position inside the medium. When this
crossing occurs, pairs of fields exchange their partners to
form new pairs that travel again diffusively through the
system until they reach the output boundaries. There are
two different ways to do so as represented in Fig. 11. For
the same reason that made CRT1 negligible (see appendix
C), the diagram represented in Fig. 11 (b) is negligible
for all positions r and r′ in the regime kL� 1.

Let us stress here the difference between CRT2 and
CTT2 . CTT2 is made of the same diagrams as in Fig. 11 but
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Figure 11. Typical diagrams contributing to the connected
four-field correlations in R-T. Panel (a) corresponds to the
case where the fields exchange at the entrance, propagate
and exchange inside the medium. After this exchange they
can travel diffusively through long distances to eventually be
measured at the desired points. Panel (b) corresponds to the
case where the two pairs of fields propagate first together, then
exchange inside the medium and at the end have to exchange
again to eventually be measured at two different points. The
output vertex of this diagram is identical to the output vertex
of the C1 correlation.

with the point r′ in the transmission plane. As a result,
the diagram of Fig. 11 (b) is not negligible for observa-
tion points in the same transmission plane. In particular,
this diagram with observation points in the far field is the
Fourier transform of the one represented in Fig. 11 (a)
with points at the sample surface. Conversely, for CRT2 ,
since the diagram of Fig. 11 (b) is negligible, we measure
in the far field the contribution of Fig. 11 (a) only:

CRT (kb,k
′
b) =

∫
d∆r

A
CRT (∆r), (9)

for any couple of observation directions kb,k
′
b. Here A

is the transverse area covered by the input illumination.
Although CTT2 contains the same information whether it
is measured at the sample surface or angularly in the far
field, this is not the case for CRT2 .

Mathematically, the contribution of Fig. 11 (a) to the
correlator (6) reads

〈δER(r)δER(r)∗δET (r′)δET (r′)∗〉C2 =∫
|〈E(r1)〉|2|〈E(r2)〉|2 L(r2,ρ2) L(r1,ρ1)

×H(ρ1,ρ2,ρ3,ρ4) L(r3,ρ3) L(r4,ρ4)

× |〈G(r′ − r3)〉|2|〈G(r− r4)〉|2dr1...dr4dρ1...dρ4, (10)

where 〈G(r)〉 is the mean Green’s function of the wave
equation, L(r, r′) represents a diffusive pair of fields that
propagate from r to r′, and the operator H(ρ1,ρ2,ρ3,ρ4)
stands for the diffusion partner exchange. The latter is

called a Hikami vertex and reads

H(ρ1,ρ2,ρ3,ρ4) =
h

4
δ(ρ1,ρ2,ρ3,ρ4)

× (

1︷ ︸︸ ︷
∆ρ1

+ ...+ ∆ρ4
+

2︷ ︸︸ ︷
2∇ρ1.∇ρ2 +

3︷ ︸︸ ︷
2∇ρ3.∇ρ4), (11)

where δ(ρ1,ρ2,ρ3,ρ4) means
∫
δ(ρ1−ρ)δ(ρ2−ρ)δ(ρ3−

ρ)δ(ρ4 − ρ)dρ and h is the weight of the vertex defined
in Ref. [6] for example. We have labelled three terms
in Eq. (11). In the literature dedicated to mesoscopic
physics it is often argued that the term 1 is negligible
(since it forces the crossing to occur at the sample surface,
see Ref. [7]), while the two others give rise to equal con-
tributions, see Ref. [8]. This was the approach adopted
in Ref. [18], where the Hikami vertex was replaced by
twice the term 3. We call Cout

2 the analytical form of
the correlation calculated in this way. Similarly, we call
C in

2 the form obtained by keeping twice the term 2. In
fact, in the R-T configuration, there is no good reason
to neglect the term 1 nor to assume that terms 2 and 3
are of the same amplitude. For this reason, we compute
here all contributions explicitly. We write the complete
correlator as

CRT2 (r, r′) = C∆
2 (r, r′) +

C in
2 (r, r′) + Cout

2 (r, r′)

2
, (12)

where the three contributions come from the three terms
labelled in the vertex (11). Following the same approach
as in Ref. [18], we find in three-dimensional space

C∆
2 =

−3

4k2`2

∫
J0(q∆r/L) sh(qz0/L)2

q sh[q(1 + 2z0/L)]2

×
(

sh
[
q
(

1 +
z0

L

)]
sh
(
q
z0

L

) 27L

10`

+

(
27

20
+

5`2

3L2

)
q sh

[
q
(

1 + 2
z0

L

)])
dq, (13)

C in
2 =

−3

4k2`2
15

2

∫
J0(q∆r/L) sh(qz0/L)2

q2 sh
[
q(1 + 2 z0L )

]2
×
(
−q ch

[
q
(

1 +
z0

L

)]
+ sh(q)

)
dq, (14)

Cout
2 =

−3

4k2`2
15

2

∫
J0(q∆r/L) sh(qz0/L)2

q2 sh
[
q
(
1 + 2 z0L

)]2
×
(
−q ch(q) +

[
1 + q2

(
1 +

2z0

L
+

2z2
0

L2

)]
sh(q)

)
dq,

(15)
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and in two-dimensional space

C∆
2 =

−L
πk`2

∫
cos(q∆r/L) sh(qz0/L)2

q2 sh[q
(
1 + 2 z0L

)
]2

(16)

×
(

sh
(
q
z0

L

)
sh
[
q
(

1 +
z0

L

)] 16(1 + π
2 )L

π2(1 + π
4 )`

+

(
4(1 + π

2 )2

π2(1 + π
4 )

+
(1 + π

4 )`2

L2

)
q sh

[
q
(

1 + 2
z0

L

)])
dq

C in
2 =

−32L

πk`2
(1 + π/4)

π2

∫
cos(q∆r/L) sh(qz0/L)2

q3 sh[q
(
1 + 2 z0L

)
]2

×
(
−q ch

[
q
(

1 +
z0

L

)]
+ sh(q)

)
dq (17)

Cout
2 =

−32L

πk`2
(1 + π/4)

π2

∫
cos(q∆r/L) sh(qz0/L)2

q3 sh[q
(
1 + 2 z0L

)
]2

×
(
−q ch(q) +

[
1 + q2

(
1 +

2z0

L
+

2z2
0

L2

)]
sh(q)

)
dq,

(18)

where z0 is the extrapolation length (see Ref. [18] for
details). We have represented these different contribu-
tions in Fig. 12 in the case of wave propagation through
2D disordered slab. The contribution Cout

2 is negative,
whereas C in

2 and C∆
2 are positive. In addition, C in

2 and
Cout

2 do not have the same amplitude. However the sum
of all terms, given by Eq. (12), turns out to be well ap-
proximated by Cout

2 , as it was done in Ref. [18]. Both
expressions are in good agreement with simulations of
microscopic wave propagation. Hence, we conclude that
all conclusions of Ref. [18] remain qualitatively valid.
In particular, at large optical depth L � `, we find
CRT2 (∆r) = −f(∆r/L)/(kL)d−1, where f(x) is a posi-
tive decaying function of range unity given by

f(x) =

∫ ∞
0

q cos(qx)

sh(q)

(
(1 + π/2)2 + π(1 + π/2)

4π(1 + π/4)

+
1 + π/4

π

[−2q ch(q) + sh(q)(2 + q2)]

q2 sh(q)

)
dq

in dimension 2 and by

f(x) =

∫ ∞
0

q2 J0(qx)

sh(q)

×
(

21

20
+

5

4

[−2q ch(q) + sh(q)(2 + q2)]

q2 sh(q)

)
dq

in dimension 3. This means, in particular, that the R-T
correlation becomes independent of the disorder strength
k` in the deep diffusive regime.

APPENDIX F: DEPENDENCE ON THE ANGLE
OF INCIDENCE IN THE REGIME L ∼ `

In this appendix we discuss the angular dependance of
the shape of the correlation CRT (∆r) in the regime of

-2,5 -2 -1,5 -1 -0,5 0 0.5 1 1.5 2 2.5
-0.015

-0.01
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0
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0.01

Figure 12. Analytical predictions for the CRT
2 correlation

(black solid line), Cout
2 correlation (red dotted line) and

C in
2 correlation (green dash-dotted line) compared with the

simulation of 2D wave propagation in a disordered medium
(blue dashed line). Parameters of the simulations: k` = 10,
L/` = 10, θa = 0.

Figure 13. CRT (∆r) calculated from 3D numerical simula-
tions of the wave propagation in a disordered slab of mod-
erate optical depth. The direction ∆y = 0 is defined as the
intersection of the incidence plane with the sample surface.
Parameters: L/` = 1, k` = 15, θa ' 75◦.

moderate optical depth. In Fig. 13, we have represented
the result of 3D numerical simulations of the wave prop-
agation in a disordered slab of optical thickness L/` = 1
and disorder strength k` = 15. The horizontal axis is de-
fined as the intersection of the incidence plane with the
sample surface (here θa ' 75◦). As discussed in the main
text, the correlation is positive for ∆r . L and presents
negative side lobes that are more pronounced along the
illumination direction. We have analyzed the angular
dependence of this shape along the direction ∆y = 0.
The results are presented in Fig. 14. For θa = 57◦, the
correlation CRT (∆x) is asymetric. When the angle of in-
cidence θa increases, both the positive central peak and
the negative side lobes grow. In addition, the correla-
tion becomes more and more symmetric. We interpret
the shape of this correlation function as the result of
the superposition of two contributions, CRT2 and CRT0 .
The contribution CRT2 is a negative deep with a mini-
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mum located at ∆x > 0. As discussed in the main text,
this contribution is almost independent of θa. On the
other hand, the contribution CRT0 contains both a posi-
tive peak located at ∆x ' 0 and symmetric negative side
lobes. It is also strongly dependent on the illumination
angle (see appendix G for details). Hence, the latter is
responsible for the anisotropic shape observed in Fig. 13
and the evolution presented in in Fig. 14. In particu-
lar, the correlation CRT (∆x) shown in Fig. 14 becomes
more and more symmetric for increasing θa because the
amplitude of the negative side lobes of CRT0 gets larger
than the CRT2 deep. A microscopic interpretation of this
phenomenon is proposed in the next appendix.

APPENDIX G: CRT
0 CORRELATION WITH

PLANE WAVE ILLUMINATION

The C0 correlation has first been introduced in
Refs. [23, 33] in the case of a point source excitation.
Here we consider the same class of scattering processes,
but generated by a plane wave excitation. As we will
see, both the formal calculation and the qualitative con-
sequences are different from the case of a point source
excitation. The microscopic representation of the CRT0

diagrams are represented in Fig. 15. Each diagram in-
volves scattering paths that visit a common scatterer lo-
cated near the front side of the sample. The symmet-
ric diagrams (not shown) that involve a common scat-
terer at the outputs can be neglected for the same rea-
son as the C1 correlation (see appendix C). Using the
same notations as in appendix E, the four-field correlator
CRT0 (∆r) = 〈δER(r)δER(r)∗δET (r′)δET (r′)∗〉C0

takes,
in 3D, the form

CRT0 (∆r) =
4π

`

∫
V (r2, r3) L(r2, r4) L(r3, r5)

× |〈G(r− r4)〉|2|〈G(r′ − r5)〉|2dr2dr3dr4dr5,

-8 -6 -4 -2 0 2 4 6 8
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Figure 14. Dependence of CRT (∆r) on the illumination angle
θa, along the illumination direction ∆y = 0 (horizontal axis of
Fig. 13). Parameters of the 3D simulation: L/` = 1, k` = 15.

where V (r2, r3) is the sum of the four possibilities for
connecting the input plane wave to the ladder diagrams
starting in r2 and r3, as represented in Fig. 15. For
example the contribution of Fig. 15(a) to the vertex V is

V (a)(r2, r3) =

∫
〈E(r2)〉∗〈E(r3)〉∗|〈E(r1)〉|2

× 〈G(r2 − r1)〉〈G(r3 − r1)〉dr1, (19)

where the mean field 〈E(r)〉 depends on the incidence
angle. By integrating over the transverse coordinates,
we get

CRT0 (∆r) =
`

16π3

×
∫ (

[Ṽ (a)
qa,q(z2, z3) + Ṽ (c)

qa,q(z2, z3)]ei(qa−q).∆r

+[Ṽ (b)
qa,q(z2, z3) + Ṽ (d)

qa,q(z2, z3)]ei(q−qa).∆r
)

× Lq−qa
(z2, 0) Lq−qa

(z3, L)dqdz2dz3, (20)

where z label longitudinal coordinates, qa is the trans-
verse component of the incident wave vector ka, and
Lq(z, z′) is the Fourier transform of L(r, r′) with respect
to the transverse part of the coordinate r − r′. In addi-
tion, the components Ṽ are given by

Ṽ (a)
qa,q(z2, z3) =

∫
Ḡqa

(0, z1)2Ḡ2qa−q(z1, z3) (21)

× Ḡq(z1, z2)Ḡqa(0, z2)∗Ḡqa(0, z3)∗dz1,

Ṽ (c)
qa,q(z2, z3) =

∫
|Ḡqa(0, z1)|2Ḡq(z1, z3)∗ (22)

× Ḡq(z1, z2)Ḡqa
(0, z2)∗Ḡqa

(0, z3),dz1,

Ṽ (b) = Ṽ (a)∗, and Ṽ (c) = Ṽ (d)∗. In these expres-
sions, Ḡq(z, z′) = i/(2kz)e

ikz(z′−z)e−|z
′−z|/2µ`, with kz =√

k2 − q2 ≡ kµ, is the transverse Fourier transform of
the mean Green’s function of the Helmholtz equation.
We now make the approximations L(z2, 0, q − qa) '
L(0, 0, q − qa) and L(z3, L, q − qa) ' L(0, L, q − qa), and
integrate Eq. (20) over the longitudinal coordinates z1,
z2 and z3. The correlator becomes:

CRT0 (∆r) =
`4

128π3k6

∫
cos [(qa − q).∆r]

× Lq−qa
(0, 0) Lq−qa

(0, L) F(µ, µa, k`)dq, (23)

with

F(µ, µa, k`) =
2(µa − µ)

µa(2µa − µ)(µ+ µa)

×
[
9µ3 + 18µ2µa + 11µµ2

a + 2µ3
a + 4µ3µ2

a(µ− µa)2k2`2
]

/
([

9µ2 + µ2
a + 6µµa + 4µ2µ2

a(µ− µa)2k2`2
]

×
[
(µ+ µa)2 + 4µ2µ2

a(µ− µa)2k2`2
])
, (24)
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Figure 15. Leading diagrams contributing to CRT
0 . Shaded

tubes represent diffusive paths (ladders); single solid lines
stand for averaged fields and single dashed lines for their com-
plex conjugates. The extra scatterer located near the surface
boundary can connect the ladders in four different ways.

where µa =
√

1− q2
a/k

2 and µ =
√

1− q2/k2.
Normalizing the correlator by the intensity product

〈|δER(r)|2〉〈|δET (r′)|2〉 = `/6k4µ2
aL and the integration

momentum variable by the sample thickness L, we finally
obtain

CRT0 (∆r) =
27µ2

akL

4π(k`)3

∫
cos

[
(q′a − q′).∆r

L

]
× P (q′a,q

′) F(µ, µa, k`)dq′, (25)

where q′a = qaL = kLsinθa, and the ladder contribution
P (q′a,q

′) is defined as:

P (q′a,q
′) =

sh [|q′a − q′|z0/L]
3

sh [|q′a − q′|(1 + z0/L)]

|q′a − q′|2 sh [|q′a − q′|(1 + 2z0/L)]
2 .

(26)
In order to obtain the result (25) we used various approx-
imations that are justified in the diffusive regime L > `
only. Therefore, we must be cautious not to use this re-
sult in the quasi-ballistic regime L . `. We note also
that in the deep diffusive regime L� `, z0 and for small
angle of incidence (µa ' 1), the CRT0 correlation with
plane wave illumination takes the compact form:

CRT0 (∆r) ' 5

16πk4L4

∫
cos

[
(q′a − q′).∆r

L

]
× q′2|q′a − q′|

sh[|q′a − q′|]
dq′, (27)

which scales as CRT0 ∝ 1/(kL)4. In this regime, it is
therefore much smaller than CRT2 ∝ 1/(kL)2 (see ap-
pendix E). This explains why it is not observed experi-
mentally in the diffusive regime.

Before analyzing the result (25) in more details, let
us comment on the differences with the correlation cal-
culated with plane wave outputs or point-source inputs.

For plane-wave outputs, we find

CRT0 (kb,kb′) =

∫
d∆r

A
CRT0 (∆r) = 0, (28)

for all observation directions kb,kb′ . This striking result
comes from the fact that F(µa, µa, k`) = 0. This means
that, for plane wave outputs, the diagram of Fig. 15(a)
[resp. Fig. 15(b)] is compensated by the one Fig. 15(c)
[resp. Fig. 15(d)]. This result turns out to be completely
different from the one obtained in the configuration in-
volving point-like sources and detectors, where the dia-
grams of Figs. 15(a,b) do not contribute to the correla-
tion.

Let us now discuss the strong dependence of the result
(25) on the illumination angle θa. At the origin of this de-
pendence is the total momentum conservation during the
interaction with the common scatterer of Fig. 15. The in-
formation carried by the illumination plane wave is trans-
mitted to the ladder diagrams that conserve momentum
over long distances, so that the input information fi-
nally reaches the sample boundaries. The same property
occurs in the well-known memory effect introduced in
Ref. [15]. We illustrate the dependence of the correlation
(25) on θa in Fig. 16. For θa = 0, the rotational symme-
try is preserved so that CRT0 (∆r) depends on ∆r only. It
presents a positive peak centered in ∆r = 0, that extends
over a distance ∆r ∼ L. Beyond this distance the cor-
relation presents small negative side lobes, that are such
that the sum rule (28) is satisfied. When the rotational
symmetry is broken (θa 6= 0), the correlation becomes
anisotropic. It now presents two mirror symmetries with
respect to the intersection of the incidence plane with
the sample surface. The direction of this intersection de-
fines the horizontal axis in Fig. 16. We observe that the
negative side lobes become more pronounced along this
direction. In addition, the amplitude of both the central
peak and the side lobes get larger for increasing θa, in
agreement with the sum rule (28) as well as the numeri-
cal observations discussed in the previous appendix.

The previous analysis shows that CRT0 reproduces the
features observed experimentally in the R-T correlation
in the regime L ∼ `. As was observed in the experiment,
CRT0 is long-range, keeps a memory on the incidence an-
gle, becomes anisotropic for θa 6= 0, presents a central
peak and negative side lobes, and both the peak and the
side lobes become more pronounced when θa is increased.
That said, it should be stressed that the formula (25)
does not reproduce quantitatively the amplitude of the
positive correlation observed in the regime L ∼ `. This
is not much a surprise since, as we explained above, the
result (25) was obtained in the diffusive regime L > `.
In addition, it is worth mentioning that the scattering
processes described by CRT0 and CRT2 are not the only
ones that contribute in the quasi-ballistic regime L . `.
For example, it is clear that, in the regime L � `, the
scattering sequences where the four fields interact with
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Figure 16. Analytical prediction for the CRT
0 correlation (normalized to unity) represented in Fig. 15 for two different illu-

mination angles: (a) θa = 0 and (b) θa = 45◦ and their cut (in caption) along the direction ∆y = 0 which is defined as the
intersection of the incidence plane with the sample surface. The caption corresponds to the cut along ∆y = 0 . Parameters:
λ = 632 nm, L = 50µm, ` = 15µm. The diffusive approximation was used for the ladder diagrams.

a common scatterer play an important role as well. We
did not discuss such contributions to the correlation in
the main text because the regime L � ` is not probed
experimentally and such scattering sequences do not pos-
sess the dependence on the illumination angle mentioned
above.
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