249 research outputs found

    Dynamics of a 9-DOF Heterogeneous Robotic Platform for Spacecraft Motion Emulation

    Get PDF
    Increasing access to space has driven demand for low cost, portable, and highly specialized robotic platforms to accurately simulate multi-dimensional space missions. Presented is an effective heterogeneous robotic system that emulates orbital motion from given control algorithms. This robotic platform is composed of a three degrees of freedom (3-DOF) holonomic omni wheel ground vehicle carrying a 6-DOF robotic manipulator, which results in a 9-DOF coupled moving manipulator system. The dynamical models are derived and feedback linearization is studied to control the system. The integrated controls and hardware result in an a sophisticated in-lab system that will be scalable from orbital motion to execution of complex tasks, including spaceflight rendezvous and proximity operations, servicing missions, and surface exploration and sampling

    Application and Analysis of Bounded-Impulse Trajectory Models with Analytic Gradients

    Get PDF
    In the companion paper, analytic methods were presented for computing the Jacobian entries for two-sided direct shooting trajectory models that utilize the bounded-impulse approximation. In this paper we discuss practical implementation considerations. Efficient computation of the mathematical components required to compute the partials is discussed and a guiding numerical example is provided for validation purposes. A solar electric power model suitable for preliminary mission design is presented, including a method for handling thruster cut-off events that result in non-smooth derivatives. The challenges associated with incorporating the SPICE ephemeris system into an optimization framework are discussed and an alternative is presented that results in smooth time partials. Application problems illustrate the benefits of employing analytic Jacobian calculations vs. using the method of finite differences. The importance of accurately modeling hardware and operational constraints at the preliminary design stage, and the benefits of using an analytic Jacobian in a solver that combines the monotonic basin hopping heuristic method with a local gradient search are also explored

    Analytic Gradient Computation for Bounded-Impulse Trajectory Models Using Two-Sided Shooting

    Get PDF
    Many optimization methods require accurate partial derivative information in order to ensure efficient, robust, and accurate convergence. This work outlines analytic methods for computing the problem Jacobian for two different bounded-impulse spacecraft trajectory models solved using two-sided shooting. The specific two-body Keplerian propagation method used by both of these models is described. Methods for incorporating realistic operational constraints and hardware models at the preliminary stage of a trajectory design effort are also demonstrated and the analytic methods derived are tested for accuracy using automatic differentiation. A companion paper will solve several relevant problems that show the utility of employing analytic derivatives, i.e. compared to using derivatives found using finite differences

    Integrated digital avionics to improve aircraft environmental control systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77327/1/AIAA-46929-196.pd

    Strontium optical lattice clocks for practical realization of the metre and secondary representation of the second

    Full text link
    We present a system of two independent strontium optical lattice standards probed with a single shared ultra-narrow laser. The absolute frequency of the clocks can be verified by the use of Er:fiber optical frequency comb with the GPS-disciplined Rb frequency standard. We report hertz-level spectroscopy of the clock line and measurements of frequency stability of the two strontium optical lattice clocks.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Meas. Sci. Technol. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/0957-0233/26/7/07520

    Extension of Earth-Moon libration point orbits with solar sail propulsion

    Get PDF
    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail induced acceleration, families of Lyapunov, halo, vertical Lyapunov, Earth-centred, and distant retrograde orbits are created. As the solar sail circular restricted three-body problem is non-autonomous, a constraint defined within the differential correction scheme ensures that all orbits are periodic with the Sun’s motion around the Earth-Moon system. The continuation method then starts from a classical libration point orbit with a suitable period and increases the solar sail acceleration magnitude to obtain families of orbits that are parametrised by this acceleration. Furthermore, different solar sail steering laws are considered (both in-plane and out-of-plane, and either fixed in the synodic frame or fixed with respect to the direction of sunlight), adding to the wealth of families of solar sail enabled libration point orbits presented. Finally, the linear stability properties of the generated orbits are investigated to assess the need for active orbital control. It is shown that the solar sail induced acceleration can have a positive effect on the stability of some orbit families, especially those at the L2 point, but that it most often (further) destabilises the orbit. Active control will therefore be needed to ensure long-term survivability of these orbits

    Primary bilateral adrenal B-cell lymphoma associated with EBV and JCV infection

    Get PDF
    Primary lymphoma of the adrenal gland is a rare and highly aggressive disease, with only a few reports in the literature. The pathogenesis is unknown, but detection of Epstein Barr virus (EBV) genome sequences and gene expression in some cases of primary adrenal lymphomas suggested the virus might be a causative agent of the malignancy. While investigating the presence of genome sequences of oncogenic viruses in a large series of adrenal tumors, both EBV and JC polyomavirus (JCV) DNA sequences were detected in a diffuse large primary bilateral B-cell non-Hodgkin lymphoma of the adrenal gland, which was diagnosed only at postmortem examination in a 77 year-old woman with incidentally discovered adrenal masses and primary adrenal insufficiency. The presence of both EBV and JCV genome sequences suggests the relevance of EBV and JCV coinfection in the pathogenesis of this rare form of B-cell lymphoma

    An acceptor-substrate binding site determining glycosyl transfer emerges from mutant analysis of a plant vacuolar invertase and a fructosyltransferase

    Get PDF
    Glycoside hydrolase family 32 (GH32) harbors hydrolyzing and transglycosylating enzymes that are highly homologous in their primary structure. Eight amino acids dispersed along the sequence correlated with either hydrolase or glycosyltransferase activity. These were mutated in onion vacuolar invertase (acINV) according to the residue in festuca sucrose:sucrose 1-fructosyltransferase (saSST) and vice versa. acINV(W440Y) doubles transferase capacity. Reciprocally, saSST(C223N) and saSST(F362Y) double hydrolysis. SaSST(N425S) shows a hydrolyzing activity three to four times its transferase activity. Interestingly, modeling acINV and saSST according to the 3D structure of crystallized GH32 enzymes indicates that mutations saSST(N425S), acINV(W440Y), and the previously reported acINV(W161Y) reside very close together at the surface in the entrance of the active-site pocket. Residues in- and outside the sucrose-binding box determine hydrolase and transferase capabilities of GH32 enzymes. Modeling suggests that residues dispersed along the sequence identify a location for acceptor-substrate binding in the 3D structure of fructosyltransferases
    corecore