research

Application and Analysis of Bounded-Impulse Trajectory Models with Analytic Gradients

Abstract

In the companion paper, analytic methods were presented for computing the Jacobian entries for two-sided direct shooting trajectory models that utilize the bounded-impulse approximation. In this paper we discuss practical implementation considerations. Efficient computation of the mathematical components required to compute the partials is discussed and a guiding numerical example is provided for validation purposes. A solar electric power model suitable for preliminary mission design is presented, including a method for handling thruster cut-off events that result in non-smooth derivatives. The challenges associated with incorporating the SPICE ephemeris system into an optimization framework are discussed and an alternative is presented that results in smooth time partials. Application problems illustrate the benefits of employing analytic Jacobian calculations vs. using the method of finite differences. The importance of accurately modeling hardware and operational constraints at the preliminary design stage, and the benefits of using an analytic Jacobian in a solver that combines the monotonic basin hopping heuristic method with a local gradient search are also explored

    Similar works