94 research outputs found
Central Mediterranean Sea forecast: effects of high-resolution atmospheric forcings
International audienceOcean forecasts over the Central Mediterranean, produced by a near real time regional scale system, have been evaluated in order to assess their predictability. The ocean circulation model has been forced at the surface by a medium, high or very high resolution atmospheric forcing. The simulated ocean parameters have been compared with satellite data and they were found to be generally in good agreement. High and very high resolution atmospheric forcings have been able to form noticeable, although short-lived, surface current structures, due to their ability to detect transient atmospheric disturbances. The existence of the current structures has not been directly assessed due to lack of measurements. The ocean model in the slave mode was not able to develop dynamics different from the driving coarse resolution model which provides the boundary conditions
Numerical simulation and decomposition of kinetic energy in the Central Mediterranean: insight on mesoscale circulation and energy conversion
The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean region has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products. <br><br> The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre. <br><br> The classical kinetic energy decomposition (eddy and mean) allowed to depict and to quantify the permanent and fluctuating parts of the circulation in the region, and to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer
Indication of recent warming process at the intermediate level in the Tyrrhenian Sea from SOOP XBT measurements
The Tyrrhenian Sea is a sub-basin of the western Mediterranean crossed by intermediate and deep waters from the eastern basin. Across this sub-basin, temperature profiles of the water column from expendable bathythermographs (XBT) have been acquired for sixteen years along transects realized thanks to the use of commercial vessels. Since 1999 an increase of temperature has been observed at intermediate depths even if interspersed with periods of decrease. This increase involves deeper and deeper depths along the years then involving the whole sub-basin in the range 200-800 m in September 2014 when largest anomalies over the whole period are found. The paper shows evidences of this rapid heating, giving insights into the origin and the diffusion of the warmer intermediate waters then showing its evolution in years and its relationship with the Eastern Mediterranean Transient
Observations of a phytoplankton spring bloom onset triggered by a density front in NW Mediterranean
Phytoplankton blooms in the northwestern Mediterranean Sea are seasonal
events that mainly occur in a specific area comprising the Gulf of Lion and
the Provençal basin, where they are promoted by a general cyclonic
circulation, strong wind-driven mixing and subsequent re-stratification of
the water column. At the southern boundary of this area, a persistent density
front known as the north Balearic front can be found. The front is presumed
to cause an early phytoplankton bloom in its vicinity because (a) it enhances
the transport of nutrients into the euphotic layer and (b) it promotes the
speedy re-stratification of the water column (through frontal instabilities).
In February and March 2013, a glider, equipped with a CTD (conductivity, temperature, and depth device) and a fluorometer, was
deployed on a mission that took it from the Balearic Islands to Sardinia and
back. The frontal zone was crossed twice, once during the outbound leg and
the once on the return leg. The data provided by the glider clearly showed
the onset of a bloom soon after a decrease in wind-driven turbulent
convection and mixing. The in situ observations were supported and confirmed
by satellite imagery. It is shown that frontal dynamics play a key role in
the promotion and acceleration of re-stratification, which is a necessary
pre-conditioning factor for the onset of blooms much like other relevant
processes such as an enhanced biological pump. Swift re-stratification
stimulates new production by inhibiting mixing. Finally, viewing the blooming
phenomenon from a regional perspective, it seems that Sverdrup's critical
depth model applies in the northern well-mixed area whereas, in the south,
front-related re-stratification seems to be the principal cause
Effects of the 2003 European heatwave on the Central Mediterranean Sea: surface fluxes and the dynamical response
International audienceThe effects of the 2003 European heatwave on the sea surface layer of the Central Mediterranean were studied using a regional 3-D ocean model. The model was used to simulate the period 2000 to 2004 and its performance was validated using remotely-sensed and in situ data. Analysis of the results focused on changes in the Sea Surface Temperature (SST) and on changes to the surface and sub-surface current field. This permitted us to identify and quantify the anomalies of atmospheric and sea surface parameters that accompanied the heatwave. The dominant annual cycle in each variable was first removed and a wavelet analysis then used to locate anomalies in the time-frequency domain. We found that the excess heating affecting the sea surface in the summer of 2003 was related to a significant increase in air temperature, a decrease in wind stress and reduction of all components of the upward heat flux. The monthly averages of the model SST were found to be in good agreement with remotely-sensed data during the period studied, although the ocean model tended to underestimate extreme events. The spatial distribution of SST anomalies as well as their time-frequency location was similar for both the remotely-sensed and model temperatures. We also found, on the basis of the period of the observed anomaly, that the event was not limited to the few summer months of 2003 but was part of a longer phenomenon. Both the model results and experimental data suggest the anomalous heating mainly affected the top 15 m of ocean and was associated with strong surface stratification and low mixing. The skill of the model to reproduce the sub-surface hydrographic features during the heatwave was checked by comparison with temperature and salinity measurements. This showed that the model was generally in good agreement with observations. The model and observations showed that the anomalous warming also modified the currents in the region, most noticeably the Atlantic Ionian Stream (AIS) and the Atlantic Tunisian Current (ATC). The AIS was reduced in intensity and showed less meandering, mainly due to the reduced density gradient and low winds, while the ATC was enhanced in strength, the two currents appearing to modulate each other in order to conserve the total transport of Modified Atlantic Water
The Sicily Channel Regional Model forecasting system: initial boundary conditions sensitivity and case study evaluation
The Sicily Channel Regional Model forecasting system was tested using an optimization package for the initial and lateral boundary conditions. Spurious high frequency oscillations during the spin-up time were successfully reduced both in duration and magnitude by optimizing the time tendency of the free surface elevation using the Variational Initialization and Forcing Platform method developed in the framework of the Mediterranean Forecasting System Towards the Environmental Prediction project. The effect of optimization was most profound for the free surface elevation, where all oscillations with periods shorter than 4 h were suppressed
Operational evaluation of the Mediterranean Monitoring and Forecasting Centre products: implementation and results
A web-based validation platform has been developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) for the Near Real Time validation of the MyOcean-Mediterranean Monitoring and Forecasting Centre products (Med-MFC). A network for the collection of the in-situ observations, the nested sub-basin forecasting systems model data (provided by the partners of the Mediterranean Operational Oceanography Network, MOON) and the Sea Surface Temperature (SST) satellite data has been developed and is updated every day with the new available data. The network collects temperature, salinity, currents and sea level data. The validation of the biogeochemical forecast products is done by use of ocean colour satellite data produced for the Mediterranean Sea. All the data are organized in an ad hoc database interfaced with a dedicated software which allows interactive visualizations and statistics (CalVal SW). This tool allows to evaluate NRT products by comparison with independent observations for the first time. The heterogeneous distribution and the scarcity of moored observations reflect with large areas uncovered with measurements. Nevertheless, the evaluation of the forecast at the locations of observations could be very useful to discover sub-regions where the model performances can be improved, thus yielding an important complement to the basin-mean statistics regularly calculated for the Mediterranean MFC products using semi-independent observations
DISTRIBUTION OF SPAWNING AND NURSERY GROUNDS FOR DEEP–WATER RED SHRIMPS IN THE CENTRAL WESTERN MEDITERRANEAN SEA
The presence of spawning and nursery grounds of Aristeids in the central western Mediterranean Sea were investigated using fishery-independent data (trawl surveys, 1994–2012). Spatial distributions were generated for mature animals and recruits, for both spring/summer and autumn data, using an inverse distance weighted deterministic interpolation. The persistence index was used to identify stable spawning and nursery grounds in the Sardinian slope region for Aristaeomorpha foliacea and Aristeus antennatus. Areas of aggregation for recruits and mature females appear connected with important physical habitat features. The analysis also suggests a seasonal bathymetric distribution for nursery areas. The recruits of A. foliacea are located in the upper part of the continental slope (377-450 m) in spring-summer and reach greater depths (468-628 m) in autumn. For A. antennatus, for which nursery areas only emerge in autumn, there is presumably an opposite ontogenic migration, from deep sea to upper slope, during the summer (575-681 m). Results indicate also a partial overlap between the nursery and spawning grounds of both species. In this particular areas, local environmental conditions such as upwelling events or the presence of canyons and seamounts seem to play an important role in their distribution. This study generated also relevant information on the spatial and temporal distribution of seasonal or persistent aggregations of spawners and recruits, providing scientific elements to suggest the feasibility of protecting these important resources
Distribution of spawning and nursery grounds for deep–water red shrimps in the central western Mediterranean Sea
The presence of spawning and nursery grounds of Aristeids in the central western Mediterranean Sea were investigated using fishery-independent data (trawl surveys, 1994–2012). Spatial distributions were generated for mature animals and recruits, for both spring/summer and autumn data, using an inverse distance-weighted deterministic interpolation. The persistence index was used to identify stable spawning and nursery grounds in the Sardinian slope region for Aristaeomorpha foliacea and Aristeus antennatus. Areas of aggregation for recruits and mature females appear to be connected with important physical habitat features. The analysis also suggests a seasonal bathymetric distribution for nursery areas. The recruits of A. foliacea are located in the upper part of the continental slope (377-450 m) in spring/summer and reach greater depths (468-628 m) in autumn. For A. antennatus, for which nursery areas only emerge in autumn, there is presumably an opposite ontogenic migration, from deep sea to upper slope, during the summer (575-681 m). The results also indicate a partial overlap between the nursery and spawning grounds of both species. In this particular area, local environmental conditions such as upwelling events or the presence of canyons and seamounts seem to play an important role in their distribution. This study also generated relevant information on the spatial and temporal distribution of seasonal or persistent aggregations of spawners and recruits, providing scientific elements to suggest the protection of these important resources
- …